|试卷下载
终身会员
搜索
    上传资料 赚现金
    内蒙古乌兰浩特市第十三中学2024-2025学年九上数学开学质量检测模拟试题【含答案】
    立即下载
    加入资料篮
    内蒙古乌兰浩特市第十三中学2024-2025学年九上数学开学质量检测模拟试题【含答案】01
    内蒙古乌兰浩特市第十三中学2024-2025学年九上数学开学质量检测模拟试题【含答案】02
    内蒙古乌兰浩特市第十三中学2024-2025学年九上数学开学质量检测模拟试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    内蒙古乌兰浩特市第十三中学2024-2025学年九上数学开学质量检测模拟试题【含答案】

    展开
    这是一份内蒙古乌兰浩特市第十三中学2024-2025学年九上数学开学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,矩形ABCD的长和宽分别为6和4,E、F、G、H依次是矩形ABCD各边的中点,则四边形EFGH的周长等于( )
    A.20B.10C.4D.2
    2、(4分)已知▱ABCD的周长为50cm,△ABC的周长为35cm,则对角线AC的长为( )
    A.5cmB.10cmC.15cmD.20cm
    3、(4分)在△ABC中,已知∠A、∠B、∠C的度数之比是1:1:2,BC=4,△ABC的面积为( )
    A.2B.C.4D.8
    4、(4分)实数、在数轴上对应的位置如图,化简等于( )
    A.B.
    C.D.
    5、(4分)如图,在长方形中,绕点旋转,得到,使,,三点在同一条直线上,连接,则是( )
    A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形
    6、(4分)计算的结果是
    A.﹣3B.3C.﹣9D.9
    7、(4分)如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是( )
    A.12B.16C.20D.24
    8、(4分)如图,直线y=ax+b(a≠0)过点A(0,4),B(-3,0),则方程ax+b=0的解是( )
    A.x=-3B.x=4C.x=D.x=
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上运动,点M为线段AB的中点.点D、E分别在x轴、y轴的负半轴上运动,且DE=AB=1.以DE为边在第三象限内作正方形DGFE,则线段MG长度的最大值为_____.
    10、(4分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为____.
    11、(4分)若是一个完全平方式,则______.
    12、(4分)对我国首艘国产航母002型各零部件质量情况的调查,最适合采用的调查方式是_____.
    13、(4分)关于x的方程有两个实数根,则符合条件的一组的实数值可以是b=______,c=______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分) (1)分式化简()÷;
    (2)若(1)中a为正整数,分式的值也为正整数,请直接写出所有符合条件的a的值
    15、(8分)如图,已知ABC,利用尺规在AC边上求作点D,使AD=BD(保留作图痕迹,不写作法)
    16、(8分)在正方形中,过点A引射线,交边于点H(H不与点D重合).通过翻折,使点B落在射线上的点G处,折痕交于E,连接E,G并延长交于F.
    (1)如图1,当点H与点C重合时,与的大小关系是_________;是____________三角形.
    (2)如图2,当点H为边上任意一点时(点H与点C不重合).连接,猜想与的大小关系,并证明你的结论.
    (3)在图2,当,时,求的面积.

    17、(10分)在数学课上,老师出了这样一道题:甲、乙两地相距1400km,乘高铁列车从甲地到乙地比乘特快列车少用9h,已知高铁列车的平均行驶速度是特快列车的2.8倍。求高铁列车从甲地到乙地的时间.老师要求同学先用列表方式分析再解答.下面是两个小组分析时所列的表格:
    小组甲:设特快列车的平均速度为xkm/h.
    小组乙:高铁列车从甲地到乙地的时间为yh
    (1)根据题意,填写表格中空缺的量;(2)结合表格,选择一种方法进行解答.
    18、(10分)如图,在梯形ABCD中,AD∥BC,AB=CD,BC=10,对角线AC、BD相交于点O,且AC⊥BD,设AD=x,△AOB的面积为y.
    (1)求∠DBC的度数;
    (2)求y关于x的函数解析式,并写出自变量x的取值范围;
    (3)如图1,设点P、Q分别是边BC、AB的中点,分别联结OP,OQ,PQ.如果△OPQ是等腰三角形,求AD的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′=______.
    20、(4分)如果是两个不相等的实数,且满足,那么代数式_____.
    21、(4分)27的立方根为 .
    22、(4分)已知点及第二象限的动点,且.设的面积为,则关于的函数关系式为________.
    23、(4分)将一副直角三角板按如图所示的方式放置,其中,把含角的三角板向右平移,使顶点B落在含角的三角板的斜边上,则的长度为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分) “绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买两种型号的垃圾处理设备共10台,已知每台型设备日处理能力为12吨;每台型设备日处理能力为15吨,购回的设备日处理能力不低于140吨.
    (1)请你为该景区设计购买两种设备的方案;
    (2)已知每台型设备价格为3万元,每台型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?
    25、(10分)已知直线经过点.
    (1)求的值;
    (2)求此直线与轴、轴围成的三角形面积.
    26、(12分)某地区2015年投入教育经费2900万元,2017年投入教育经费3509万元.
    (1)求2015年至2017年该地区投入教育经费的年平均增长率;
    (2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的情况,该地区到2019年需投入教育经费4250万元.如果按(1)中教育经费投入的增长率,到2019年该地区投入的教育经费是否能达到4250万元?请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,利用三角形中位线定理求证EF=GH=FG=EH,然后利用四条边都相等的平行四边形是菱形.根据菱形的性质来计算四边形EFGH的周长即可.
    【详解】
    如图,连接BD,AC.
    在矩形ABCD中,AB=4,AD=6,∠DAB=90°,则由勾股定理易求得BD=AC=2.
    ∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,
    ∴EF为△ABC的中位线,
    ∴EF=AC=,EF∥AC,
    又GH为△BCD的中位线,
    ∴GH=AC=,GH∥AC,
    ∴HG=EF,HG∥EF,
    ∴四边形EFGH是平行四边形.
    同理可得:FG=BD=,EH=AC=,
    ∴EF=GH=FG=EH=,
    ∴四边形EFGH是菱形.
    ∴四边形EFGH的周长是:4EF=4,
    故选C.
    此题考查中点四边形,掌握三角形中位线定理是解题关键
    2、B
    【解析】
    根据平行四边形的性质,首先计算AB+CB的长度,再结合三角形的周长,进而计算对角线AC的长.
    【详解】
    解:∵平行四边形的对边相等,
    ∴AB+CB=25,
    而△ABC的周长为35cm,
    ∴AC=35﹣AB﹣CB=10cm.
    故选:B.
    本题主要考查对角线的长度的计算,结合平行四边形的性质和三角形的周长可得对角线的长度.
    3、D
    【解析】
    根据比例设∠A=k,∠B=k,∠C=2k,然后根据三角形的内角和等于180°列方程求出k的值,从而得到三个内角的度数,再根据直角三角形30°角所对的直角边等于斜边的一半求出AB,利用勾股定理列式求出AC,然后根据三角形的面积公式列式计算即可得解.
    【详解】
    解:设∠A=k,∠B=k,∠C=2k,
    由三角形的内角和定理得,k+k+2k=180°,
    解得k=45°,
    所以,∠A=45°,∠B=45°,∠C=90°,
    ∴AC=BC=4,,
    所以,△ABC的面积=.
    故选:D.
    本题考查的知识点是直角三角形的性质和三角形的内角和定理,解题关键是利用“设k法”求解三个内角的度数.
    4、B
    【解析】
    由数轴得出b-a<0、1-a>0,再根据二次根式的性质化简即可.
    【详解】
    解:由数轴知b-a<0、0∴1-a>0,
    则原式=|b-a| -1-a ||
    =a-b-(1-a)
    =a-b-1+a
    =2a-b-1,
    故选:B.
    本题主要考查二次根式的性质与化简,解题的额关键是掌握二次根式的性质及绝对值的性质.
    5、D
    【解析】
    证明∠GAE=90°,∠EAB=90°,根据旋转的性质证得AF=AC,∠FAE=∠CAB,得到∠FAC=∠EAB=90°,即可解决问题.
    【详解】
    解:∵四边形AGFE为矩形,
    ∴∠GAE=90°,∠EAB=90°;
    由题意,△AEF绕点A旋转得到△ABC,
    ∴AF=AC;∠FAE=∠CAB,
    ∴∠FAC=∠EAB=90°,
    ∴△ACF是等腰直角三角形.
    故选:D.
    本题主要考查了旋转的性质和等腰三角形的定义,解题的关键是灵活运用旋转的性质来分析、判断、解答.
    6、B
    【解析】
    利用二次根式的性质进行化简即可.
    【详解】
    =|﹣3|=3.
    故选B.
    7、D
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.
    【详解】
    、分别是、的中点,
    是的中位线,

    菱形的周长.
    故选:.
    本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
    8、A
    【解析】
    根据所求方程的解,即为函数y=ax+b图象与x轴交点横坐标,确定出解即可.
    【详解】
    方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,
    ∵直线y=ax+b过B(-3,0),
    ∴方程ax+b=0的解是x=-3,
    故选A.
    本题考查了一次函数与一元一次方程,任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1+2
    【解析】
    取DE的中点N,连结ON、NG、OM.根据勾股定理可得.在点M与G之间总有MG≤MO+ON+NG(如图1),M、O、N、G四点共线,此时等号成立(如图2).可得线段MG的最大值.
    【详解】
    如图1,取DE的中点N,连结ON、NG、OM.
    ∵∠AOB=90°,
    ∴OM=AB=2.
    同理ON=2.
    ∵正方形DGFE,N为DE中点,DE=1,
    ∴.
    在点M与G之间总有MG≤MO+ON+NG(如图1),
    如图2,由于∠DNG的大小为定值,只要∠DON=∠DNG,且M、N关于点O中心对称时,M、O、N、G四点共线,此时等号成立,
    ∴线段MG取最大值1+2.
    故答案为:1+2.
    此题考查了直角三角形的性质,勾股定理,四点共线的最值问题,得出M、O、N、G四点共线,则线段MG长度的最大是解题关键.
    10、1
    【解析】
    先根据勾股定理求出BC的长,再根据图形翻折变换的性质得出AE=CE,进而求出△ABE的周长.
    【详解】
    ∵在△ABC中,∠B=90°,AB=3,AC=5,
    ∵△ADE是△CDE翻折而成,
    ∴AE=CE,
    ∴AE+BE=BC=4,
    ∴△ABE的周长=AB+BC=3+4=1.
    故答案为:1.
    本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    11、
    【解析】
    根据完全平方公式的结构特征进行判断即可确定出m的值.
    【详解】
    ∵x2+2mx+1是一个完全平方式,
    ∴m=±1,
    故答案为:±1.
    本题考查了完全平方式,熟练掌握完全平方式的结构特征是解题的关键. 本题易错点在于:是加上或减去两数乘积的2倍,在此有正负两种情况,要全面分析,避免漏解.
    12、普查
    【解析】
    根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
    【详解】
    对我国首艘国产航母002型各零部件质量情况的调查是事关重大的调查,最适合采用的调查方式是普查.
    故答案为:普查
    本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    13、2 1(答案不唯一,满足即可)
    【解析】
    若关于x的一元二次方程有两个实数根,所以△=b2-4ac≥0,建立关于b与c的不等式,求得它们的关系后,写出一组满足题意的b,c的值.
    【详解】
    解:∵关于x的一元二次方程有两个实数根,
    ∴△=b2-4ac≥0,
    即b2-4×c=b2-c≥0,
    ∴b=2,c=1能满足方程.
    故答案为2,1(答案不唯一,满足即可).
    本题考查根的判别式,掌握方程有两个实数根的情况是△≥0是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1);(2)a=3 .
    【解析】
    (1)根据分式的运算法则即可求出答案.
    (2)根据题意即可求出答案.
    【详解】
    (1)原式=,
    =
    =;
    (2)由题意可知:a+1=1或2或4,
    且a+1≠0,a2﹣1≠0,a≠0,
    ∴a=3
    本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
    15、见解析
    【解析】
    根据尺规作线段垂直平分线的作法,作出AB的垂直平分线与AC的交点,即可.
    【详解】
    如图所示:
    ∴点D即为所求.
    本题主要考查线段的垂直平分线的尺规作图,熟练掌握线段的中垂线尺规作图的基本步骤,是解题的关键.
    16、(1);等腰直角.(2)详见解析;(3)
    【解析】
    (1)连接AF,由正方形的性质及折叠的性质已知,由全等可知,CF=CE,结合可确定是等腰直角三角形;(2)连接AF,由正方形的性质及折叠的性质已知,即证;(3)设,依据题意及(2)的结论用含x的式子确定出的三边长,根据勾股定理求出x的值,即可求面积.
    【详解】
    解:(1)连接,
    ∵四边形是正方形,∴,.
    由翻折可知,.
    ∵,∴.…
    ∴.
    又平分
    ∴AC垂直平分EF

    ∴是等腰直角三角形.
    故答案为:;等腰直角.

    (2)连接,
    ∵四边形是正方形的对角线,∴,.
    由翻折可知,.
    ∵,∴.…
    ∴.…
    (3)设,则,.
    在中,,即.
    解得,即的长为.
    ∴;…
    ∴.…
    本题考查了正方形的综合问题,涉及的知识点有正方形的性质、全等三角形的证明、勾股定理,灵活将正方形的性质与三角形的知识相结合是解题的关键.
    17、(1)见解析;(2)见解析.
    【解析】
    (1)根据路程=速度×时间填写即可;
    (2)小组甲:根据乘高铁列车从甲地到乙地比乘特快列车少用9h列方程求解,然后检验;小组乙:根据高铁列车的平均行驶速度是特快列车的2.8倍列方程求解,然后检验;
    【详解】
    (1)
    (2)利用乘高铁列车从甲地到乙地比乘特快列车少用9h,高铁列车的平均行驶速度是特快列车的2.8 倍得出等量关系
    第一种:
    ,解得:x=100,
    经检验x=100 是原方程的解,
    2.8x=280,
    答:特快列车的平均行驶速度为100km/h,特高列车的平均行驶速度为280km/h;
    第二种:,
    解得:y=5 经检验y=5 是原方程的解,
    y+9=14,
    答: 乘高铁列车从甲到乙5 小时,乘特快列车14 小时.
    本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.
    18、(1)∠DBC=45;(2)y=x(x>0);(3)满足条件的AD的值为1﹣1.
    【解析】
    (1)过点D作AC的平行线DE,与BC的延长线交于E点,只要证明△BDE是等腰直角三角形即可解决问题;
    (2)由(1)可知:△BOC,△AOD都是等腰直角三角形,由题意OA=x,OB=5,根据y=•OA•OB计算即可;
    (3)分三种情形讨论即可解决问题;
    【详解】
    (1)过点D作AC的平行线DE,与BC的延长线交于E点.
    ∵梯形ABCD中,AD∥BC,AC∥DE,
    ∴四边形ACED为平行四边形,AC=DE,AD=CE,
    ∵AB=CD,
    ∴梯形ABCD为等腰梯形,
    ∴AC=BD,
    ∴BD=DE,
    又AC⊥BD,
    ∴∠BOC=90°
    ∵AC∥DE
    ∴∠BDE=90°,
    ∴△BDE是等腰直角三角形,
    ∴∠DBC=45°.
    (2)由(1)可知:△BOC,△AOD都是等腰直角三角形,
    ∵AD=x,BC=1,
    ∴OA=x,OB=5,
    ∴y=.
    (3)如图2中,
    ①当PQ=PO=BC=5时,
    ∵AQ=QB,BP=PC=5,
    ∴PQ∥AC,PQ=AC,
    ∴AC=1,∵OC=5,
    ∴OA=1﹣5,
    ∴AD=OA=1﹣1.
    ②当OQ=OP=5时,AB=2OQ=1,此时AB=BC,∠BAC=∠BCA=45°,
    ∴∠ABC=90°,同理可证:∠DCB=90°,
    ∴四边形ABCD是矩形,不符合题意,此种情形不存在.
    ③当OQ=PQ时,AB=2OQ,AC=2PQ,
    ∴AB=AC,
    ∴∠ABC=∠ACB=45°,
    ∴∠BAC=90°=∠BOC,显然不可能,
    综上所述,满足条件的AD的值为1﹣1.
    本题考查四边形综合题、梯形、等腰直角三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,学会用分类讨论的思想思考问题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3
    【解析】
    根据旋转的性质,可得∠BAC=∠PAP′=90°,AP=AP′,故△APP′是等腰直角三角形,由勾股定理得PP′的大小.
    【详解】
    解:根据旋转的性质,可得∠BAC=∠PAP′=90°,AP=AP′,
    ∴△APP′是等腰直角三角形,
    由勾股定理得PP′=.
    故答案为:.
    本题考查了图形的旋转变化,旋转得到的图形与原图形全等,解答时要分清旋转角和对应线段.
    20、1
    【解析】
    由于m,n是两个不相等的实数,且满足m2-m=3,n2-n=3,可知m,n是x2-x-3=0的两个不相等的实数根.则根据根与系数的关系可知:m+n=1,mn=-3,又n2=n+3,利用它们可以化简,然后就可以求出所求的代数式的值.
    【详解】
    解:由题意可知:m,n是两个不相等的实数,且满足m2-m=3,n2-n=3,
    所以m,n是x2-x-3=0的两个不相等的实数根,
    则根据根与系数的关系可知:m+n=1,mn=-3,
    又n2=n+3,
    则2n2-mn+2m+2015
    =2(n+3)-mn+2m+2015
    =2n+6-mn+2m+2015
    =2(m+n)-mn+2021
    =2×1-(-3)+2021
    =2+3+2021
    =1.
    故答案为:1.
    本题考查一元二次方程根与系数的关系,解题关键是把所求代数式化成两根之和、两根之积的系数,然后利用根与系数的关系式求值.
    21、1
    【解析】
    找到立方等于27的数即可.
    解:∵11=27,
    ∴27的立方根是1,
    故答案为1.
    考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算
    22、
    【解析】
    根据即可列式求解.
    【详解】
    如图,∵

    ∴点在上,
    ∴,
    故.
    此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质、三角形的面积公式.
    23、
    【解析】
    根据特殊角的锐角三角函数值,求出EC、EG的长即可.
    【详解】
    解:在直角△BCF中,∵∠F=45°,BC=1,
    ∴CF=BC=1.
    又∵EF=8,
    则EC=2.
    在直角△ABC中,∵BC=1,∠A=30°,
    ∴,
    则AE=,∠A=30°,
    ∴.
    故答案为:.
    本题考查的是平移的性质,需要正确运用锐角三角函数和特殊角的三角函数值.
    二、解答题(本大题共3个小题,共30分)
    24、(1)共有4种方案,具体方案见解析;(2)购买A型设备2台、B型设备8台时费用最少.
    【解析】
    (1)设该景区购买A种设备为x台、则B种设备购买(10-x)台,其中 0 ≤x ≤10,根据购买的设备日处理能力不低于140吨,列不等式,求出解集后再根据x的范围以及x为整数即可确定出具体方案;
    (2)针对(1)中的方案逐一进行计算即可做出判断.
    【详解】
    (1)设该景区购买设计 A型设备为x台、则 B型设备购买(10-x)台,其中 0 ≤x ≤10,
    由题意得:12x+15(10-x)≥140,
    解得x≤ ,
    ∵0 ≤x ≤10,且x是整数,
    ∴x=3,2,1,0,
    ∴B型相应的台数分别为7,8,9,10,
    ∴共有4种方案:
    方案一:A型设备 3 台、B型设备 7 台;
    方案二:A型设备 2 台、B型设备 8 台;
    方案三:A型设备 1 台、B型设备 9 台;
    方案四:A型设备 0 台、B型设备 10 台.
    (2)方案二费用最少,理由如下:
    方案一购买费用: 3 ×3+4.4 ×7=39.8 (万元)<40 (万元),∴费用为 39.8(万元);
    方案二购买费用: 2 ×3+4.4 ×8=41.2 (万元)>40 (万元),
    ∴ 费用为 41.2 ×90%=37.08(万元);
    方案三购买费用:3 ×1+4.4 ×9=42.6 (万元)>40 (万元),
    ∴ 费用为 42.6 ×90%=38.34(万元);
    方案四购买费用:4.4 ×10=44 (万元)>40 (万元), ∴ 费用为 44 ×90%=39.6(万元).
    ∴方案二费用最少,即A型设备2台、B型设备8台时费用最少.
    本题考查了一元一次不等式的应用、最优购买方案,弄清题意,找到不等关系列出不等式是解题的关键.
    25、 (1) ;(2)2.
    【解析】
    (1)把带入求解即可;(2)先求出一次函数y=-x+2与x轴和y轴的交点,再利用三角形的面积公式求解即可.
    【详解】
    (1)将点代入


    (2)
    由(1)得直线解析式为
    令,得到与轴交点为
    令,得到与轴交点为
    ∴直线与两坐标轴围成的三角形面积为.
    本题考查了待定系数法求一次函数解析式及三角形的面积,难度不大,属于基础题,注意细心运算即可.
    26、 (1)10%(2)不能.
    【解析】
    (1)增长前量(1+增长率)=增长后量,2015年2900万元为增长前量,2017年3509万元为增长后量,即可列出方程求解;
    (2)根据(1)中求得的增长率求出2019年该地区投入的教育经费.
    【详解】
    (1)设增长率为x,由题意得

    解得(不合题意,舍去)
    答:2015年至2017年该地区投入教育经费的年平均增长率为10%.
    (2)2019年该地区投入的教育经费是(万元),
    4245.89
    答:按(1)中教育经费投入的增长率,到2019年该地区投入的教育经费不能达到4250万元.
    此题考查一元二次方程的实际应用,此类是增长率问题的一元二次方程,可以根据“增长前量(1+增长率)=增长后量”列得方程.
    题号





    总分
    得分
    相关试卷

    内蒙古通辽市科尔沁右翼中学旗县2024-2025学年数学九上开学教学质量检测模拟试题【含答案】: 这是一份内蒙古通辽市科尔沁右翼中学旗县2024-2025学年数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    内蒙古师范大第二附属中学2024-2025学年九上数学开学检测模拟试题【含答案】: 这是一份内蒙古师范大第二附属中学2024-2025学年九上数学开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年重庆市中学九上数学开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年重庆市中学九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map