2025届内蒙古翁牛特旗乌丹第六中学九年级数学第一学期开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各组数中,属于勾股数的是( )
A.1,,2B.1.5,2,2.5C.6,8,10D.5,6,7
2、(4分)已知两点的坐标分别是(-2,3)和(2,3),则说法正确的是( )
A.两点关于x轴对称
B.两点关于y轴对称
C.两点关于原点对称
D.点(-2,3)向右平移两个单位得到点(2,3)
3、(4分)10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告诉与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是( )
A.2B.C.4D.
4、(4分)下列汽车标识中,是中心对称图形的是( )
A.B.C.D.
5、(4分)如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线上一点,则点B与其对应点B′间的距离为
A. B.3 C.4 D.5
6、(4分)如图,平行四边形ABCD的两条对角线相交于点O,点E是AB边的中点,图中已有三角形与△ADE面积相等的三角形(不包括△ADE)共有( )个.
A.3B.4C.5D.6
7、(4分)四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有
A.1组B.2组C.3组D.4组
8、(4分)已知,则的关系是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=10cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为_____cm.
10、(4分)如图,在平行四边形中,已知,,,点在边上,若以为顶点的三角形是等腰三角形,则的长是_____.
11、(4分)一次函数y=(m+2)x+3-m,若y随x的增大而增大,函数图象与y轴的交点在x轴的上方,则m的取值范围是____.
12、(4分)=_____.
13、(4分)如图,为的中位线,点在上,且为直角,若 ,,则的长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形 ABCD 中,AB=4,点 E为边AD上一动点,连接 CE,以 CE为边,作正方形CEFG(点D、F在CE所在直线的同侧),H为CD中点,连接 FH.
(1)如图 1,连接BE,BH,若四边形 BEFH 为平行四边形,求四边形 BEFH 的周长;
(2)如图 2,连接 EH,若 AE=1,求△EHF 的面积;
(3)直接写出点E在运动过程中,HF的最小值.
15、(8分)如图,直线y=-x+4分别与x轴、y轴交于A、B两点.
(1)求A、B两点的坐标;
(2)已知点C坐标为(2,0),设点C关于直线AB的对称点为D,请直接写出点D的坐标.
16、(8分)成都至西安的高速铁路(简称西成高铁)全线正式运营,至此,从成都至西安有两条铁路线可选择:一条是普通列车行驶线路(宝成线),全长825千米;另一条是高速列车行驶线路(西成高铁),全长660千米,高速列车在西成高铁线上行驶的平均速度是普通列车在宝成线上行驶的平均速度的3倍,乘坐普通列车从成都至西安比乘坐高速列车从成都至西安多用11小时,则高速列车在西成高铁上行驶的平均速度是多少?
17、(10分)已知关于的一元二次方程.
(1)求证:方程总有两个实数根;
(2)若方程两个根的绝对值相等,求此时的值.
18、(10分)数形结合是一种重要的数学思想,我们不但可以用数来解决图形问题,同样也可以用借助图形来解决数量问题,往往能出奇制胜,数轴和勾股定理是数形结合的典范.数轴上的两点A和B所表示的数分别是和,则A,B两点之间的距离;坐标平面内两点,,它们之间的距离.如点,,则.表示点与点之间的距离,表示点与点和的距离之和.
(1)已知点,,________;
(2)表示点和点之间的距离;
(3)请借助图形,求的最小值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在菱形ABCD中,∠C=∠EDF=60°,AB=1,现将∠EDF绕点D任意旋转,分别交边AB、BC于点E、F(不与菱形的顶点重合),连接EF,则△BEF的周长最小值是_____.
20、(4分)使代数式有意义的的取值范围是________.
21、(4分)一名主持人站在舞台的黄金分割点处最自然得体,如果舞台AB长为20m,这名主持人现在站在A处(如图所示),则它应至少再走_____m才最理想.(可保留根号).
22、(4分)若关于x的方程x2+mx-3=0有一根是1,则它的另一根为________.
23、(4分)不等式的正整数解有________个.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,把矩形OABC放入平面直角坐标系xO中,使OA、OC分别落在x、y轴的正半轴上,其中AB=15,对角线AC所在直线解析式为y=﹣x+b,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.
(1)求点B的坐标;
(2)求EA的长度;
(3)点P是y轴上一动点,是否存在点P使得△PBE的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.
25、(10分)如图,四边形是正方形,点是边上的一点,,且交正方形外角的平分线于点.
(1)如图1,当点是的中点时,猜测与的关系,并说明理由.
(2)如图2,当点是边上任意一点时,(1)中所猜测的与的关系还成立吗?请说明理由.
26、(12分)如图,正方形,点在边上,为等腰直角三角形.
(1)如图1,当,求证;
(2)如图2,当,取的中点,连接,求证:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据勾股数的定义:满足a2+b2=c2 的三个正整数,称为勾股数,据此判断即可.
【详解】
A.1,,2,因为不是正整数,故一定不是勾股数,故此选项错误;
B.1.5,2,2.5,因为不是正整数,故一定不是勾股数,故此选项错误;
C.因为62+82=102,故是勾股数.故此选项正确;
D.因为52+62≠72,故不是勾股数,故此选项错误.
故选C.
本题考查了勾股数的判定方法,比较简单,首先看各组数据是否都是正整数,再检验是否符合较小两边的平方和=最大边的平方.
2、B
【解析】
几何变换.
根据关于y轴对称的点坐标横坐标互为相反数,纵坐标相等,可得答案.
【详解】
解:∵两点的坐标分别是(-2,3)和(2,3),横坐标互为相反数,纵坐标相等,
∴两点关于y轴对称,
故选:B.
本题考查了关于y轴对称的点坐标,利用关于y轴对称的点坐标横坐标互为相反数,纵坐标相等是解题关键.
3、B
【解析】
先设报3的人心里想的数为x,利用平均数定义表示报5的人心里想的数;报7的人心里想的数;报9的人心里想的数;报1的人心里想的数,最后建立方程,解方程即可.
【详解】
设报3的人心里想的数是x
∵报3与报5的两个人报的数的平均数是4
∴报5的人心里想的数应该是8-x
于是报7的人心里想的数应该是12-(8-x)=4+x
报9的人心里想的数应该是16-(4+x)=12-x
报1的人心里想的数应该是20-(12-x)=8+x
报3的人心里想的数应该是4-(8+x)=-4-x
所以x=-4-x,解得x=-2
故答案选择B.
本题属于阅读理解和探查规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.
4、D
【解析】
根据中心对称图形的概念判断即可.(中心对称:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合.)
【详解】
根据中心对称图形的概念把图形绕着某一点旋转180°后,只有D选项才能与原图形重合,故选D.
本题主要考查中心对称图形的概念,是基本知识点,应当熟练的掌握.
5、C
【解析】
试题分析:如图,连接AA′、BB′,
∵点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,
∴点A′的纵坐标是3。
又∵点A的对应点在直线上一点,∴,解得x=4。
∴点A′的坐标是(4,3)。
∴AA′=4。
∴根据平移的性质知BB′=AA′=4。
故选C。
6、C
【解析】
试题分析:首先利用平行四边形的性质证明△ADB≌△CBD,从而得到△CDB,与△ADB面积相等,再根据DO=BO,AO=CO,利用三角形的中线把三角形的面积分成相等的两部分可得△DOC、△COB、△AOB、△ADO面积相等,都是△ABD的一半,根据E是AB边的中点可得△ADE、△DEB面积相等,也都是△ABD的一半,从而得到S△DOC=S△COB=S△DOA=S△AOB=S△ADE=S△DEB=S△ADB.不包括△ADE共有5个三角形与△ADE面积相等,
故选C.
考点:平行四边形的性质
7、C
【解析】
如图,(1)∵AB∥CD,AD∥BC,
∴四边形ABCD是平行四边形;
(2)∵AB∥CD,
∴∠ABC+∠BCD=180°,
又∵∠BAD=∠BCD,
∴∠BAD+∠ABC=180°,
∴AD∥BC,
∴四边形ABCD是平行四边形;
(3)∵在四边形ABCD中,AO=CO,BO=DO,
∴四边形ABCD是平行四边形;
(4)∵在四边形ABCD中,AB∥CD,AD=BC,
∴四边形ABCD可能是等腰梯形,也可能是平行四边形;
综上所述,上述四组条件一定能判定四边形ABCD是平行四边形的有3组.
故选C.
8、D
【解析】
将a进行分母有理化,比较a与b即可.
【详解】
∵,,
∴.
故选D.
此题考查了分母有理化,分母有理化时正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、40或.
【解析】
利用30°角直角三角形的性质,首先根据勾股定理求出DE的长,再分两种情形分别求解即可解决问题;
【详解】
如图1中,
,,,
,,设,
在中,,
,
,
如图2中,当时,沿着直线EF将双层三角形剪开,展开后的平面图形中有一个是平行四边形,此时周长.
如图中,当时,沿着直线DF将双层三角形剪开,展开后的平面图形中有一个是平行四边形,此时周长
综上所述,满足条件的平行四边形的周长为或,
故答案为为或.
本题考查翻折变换、平行四边形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
10、2或或
【解析】
分AB=BP,AB=AP,BP=AP三种情况进行讨论,即可算出BP的长度有三个.
【详解】
解:根据以为顶点的三角形是等腰三角形,可分三种情况
①若AB=BP
∵AB=2
∴BP=2
②若AB=AP
过A点作AE⊥BC交BC于E,
∵AB=AP,AE⊥BC
∴BE=EP
在Rt△ABE中
∵
∴AE=BE
根据勾股定理
AE2+BE2=AB2
即2BE2=4
解得BE=
∴BP=
③若BP=AP,则
过P点作PF⊥AB
∵AP=BP,PF⊥AB
∴BF=AB=1
在Rt△BFP中
∵
∴PF=BF=1
根据勾股定理
BP2=BF2+PF2
即BP2=1+1=2,
解得BP=
∵2,,都小于3
故BP=2或BP=或BP=.
本题主要考查了等腰三角形的性质和判定以及勾股定理,能利用分类讨论思想分三类情况进行讨论是解决本题的关键.BC=3在本题中的作用是BP的长度不能超过3,超过3的答案就要排除.
11、-2<m<1
【解析】
解:由已知得:,
解得:-2<m<1.
故答案为:-2<m<1.
12、1
【解析】
利用二次根式乘除法法则进行计算即可.
【详解】
=
=
=1,
故答案为1.
本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.
13、1cm.
【解析】
根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,结合图形计算即可.
【详解】
∵DE为△ABC的中位线,
∴DE=BC=4(cm),
∵∠AFC为直角,E为AC的中点,
∴FE=AC=3(cm),
∴DF=DE﹣FE=1(cm),
故答案为1cm.
本题考查的是三角形中位线定理,直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)8;(2) ;(3)3 .
【解析】
(1)由平行四边形的性质和正方形的性质可得EC=EF=BH,BC=DC,可证Rt△BHC≌Rt△CED,可得CH=DE,由“SAS”可证BE=EC,可得BE=EF=HF=BH=EC,由勾股定理可求BH的长,即可求四边形BEFH的周长;
(2)连接DF,过点F作FM⊥AD,交AD延长线于点M,由“AAS”可证△EFM≌△CED,可得CD=EM=4,DE=FM=3,由三角形面积公式可求解;
(3)过点F作FN⊥CD的延长线于点N,设AE=x=DM,则DE=4-x=FM,NH=4-x+2=6-x,由勾股定理可求HF的长,由二次函数的性质可求HF的最小值.
【详解】
解:(1)∵四边形BEFH为平行四边形
∴BE=HF,BH=EF
∵四边形EFGC,四边形ABCD都是正方形
∴EF=EC,BC=CD=4=AD
∴BH=EC,且BC=CD
∴Rt△BHC≌Rt△CED(HL)
∴CH=DE
∵H为CD中点,
∴CH=2=DE
∴AE=AD-DE=2=DE,且AB=CD,∠BAD=∠ADC=90°
∴Rt△ABE≌Rt△DCE(SAS)
∴BE=EC
∴BE=EF=HF=BH=EC
∵CH=2,BC=4
∴BH= = =2
∴四边形BEFH的周长=BE+BH+EF+FH=8;
(2)如图2,连接DF,过点F作FM⊥AD,交AD延长线于点M,
∵AE=1,
∴DE=3
∵∠FEM+∠CEM=90°,∠CEM+∠ECD=90°
∴∠FEM=∠ECD,且CE=EF,∠EDC=∠EMF=90°
∴△EFM≌△CED(AAS)
∴CD=EM=4,DE=FM=3,
∴DM=1,
∴S△EFH=S△EFD+S△EDH+S△DHF=×3×3+×3×2+×2×1= ;
(3)如图3,过点F作FN⊥CD的延长线于点N,
由(2)可知:△EFM≌△CED
∴CD=EM,DE=FM,
∴CD=AD=EM,
∴AE=DM,
设AE=x=DM,则DE=4-x=FM,
∵FN⊥CD,FM⊥AD,ND⊥AD
∴四边形FNDM是矩形
∴FN=DM=x,FM=DN=4-x
∴NH=4-x+2=6-x
在Rt△NFH中,HF= = =
∴当x=3时,HF有最小值==3 .
故答案为:(1)8;(2) ;(3)3 .
本题是四边形综合题,考查正方形的性质,平行四边形的判定,全等三角形的判定和性质,勾股定理,二次函数的性质,添加恰当辅助线构造全等三角形是题的关键.
15、 (1) A坐标(4,0)、B 坐标(0 , 4)(2) D(4, 2).
【解析】
分析:(1)令x=0求出与y轴的交点,令y=0求出与x轴的交点;
(2)由(1)可得△AOB为等腰直角三角形,则∠BAO=45°,因为点D和点C关于直线AB对称,所以∠BAO=∠BAD=45°,所以AD∥y轴且AD=AC,即可求得点D的坐标。
详解:(1) ∵直线y=-x+4分别与x轴、y轴交于A、B两点,
当x=0时,则y=4;当y=0,则x=4,
∴点A坐标为(4,0)、点B 坐标为(0, 4),
(2)D点坐标为D(4,2).
点睛:本题考查了一次函数与坐标轴的交点,等腰直角三角形的判定与性质,轴对称的性质,熟练掌握一次函数与坐标轴的交点、轴对称的性质是解答本题的关键.
16、高速列车在西成高铁上行驶的平均速度为165 km/h
【解析】
设普通列车的平均速度为v km/h,根据题意列出方程即可求出答案.
【详解】
解:设普通列车的平均速度为v km/h,
∴高速列车的平均速度为3vkm/h,
∴由题意可知:=+11,
∴解得:v=55,
经检验:v=55是原方程的解,
∴3v=165,
答:高速列车在西成高铁上行驶的平均速度为165 km/h.
本题考查分式方程,解题的关键是正确找出题中的等量关系,本题属于基础题型.
17、(1)见解析;(2)或-1.
【解析】
(1)先求出判别式△的值,再对“△”利用完全平方公式变形即可证明;
(2)根据求根公式得出x1=m+2,x2=1,再由方程两个根的绝对值相等即可求出m的值.
【详解】
解:(1)∵,
∴方程总有两个实数根;
(2)∵,
∴,.
∵方程两个根的绝对值相等,
∴.
∴或-1.
本题考查的是根的判别式及一元二次方程的解的定义,在解答(2)时得到方程的两个根是解题的关键.
18、(1);(2),,;(3)最小值是.
【解析】
(1)根据两点之间的距离公式即可得到答案;
(2)根据表示点与点之间的距离,可以得到A、B两点的坐标;
(3)根据两点之间的距离公式,再结合图形,通过化简可以得到答案;
【详解】
解:(1)根据两点之间的距离公式得:,
故答案为:.
(2)根据表示点与点之间的距离,
∴表示点和点之间的距离,
∴
故答案为:b,-6,1.
(3)解:
如图1,表示的长,
根据两点之间线段最短知
如图2,
∴的最小值是.
本题考查了坐标平面内两点之间的距离公式,以及平面内两点之间的最短距离,解题的关键是注意审题,会用数形结合的解题方法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1 +
【解析】
连接BD,根据菱形的性质得到AD=AB=BC=CD,∠C=∠A=60°,由等边三角形的判定定理即可得到结论;△ABD和△CBD都是等边三角形,于是得到∠EBD=∠DBC=∠C=60°,BD=CD证得∠EDB=∠FDC,根据全等三角形的性质得到DE=DF,BE=CF,证明△DEF是等边三角形,根据等边三角形的性质得到DF=EF,得到BF+BE=BF+CF=1,得到当DF⊥BC时,求得,△BEF的周长取得最小值.
【详解】
连接BD,
∵四边形ABCD是菱形,
∴AD=AB=BC=CD,∠C=∠A=60°,
∴△ABD和△CBD都是等边三角形;
∴∠EBD=∠DBC=∠C=60°,BD=CD,
∵∠EDF=60°,
∴∠EDB=∠FDC,
在△BDE与△CDF中,
∴△BDE≌△CDF,
∴DE=DF,BE=CF,
∴△DEF是等边三角形;
∴EF=DF,
∴BF+BE=BF+CF=1,
当DF⊥BC时,
此时△DEF的周长取得最小值,
∴△DEF的周长的最小值为:
故答案为:
考查菱形的性质,等边三角形的判定与性质,全等三角形的判定与性质,解直角三角形等,掌握菱形的性质是解题的关键.
20、x≥﹣1.
【解析】
根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.
【详解】
解:由题意得,1+x≥0,
解得x≥-1.
故答案为x≥-1.
本题考查二次根式的意义和性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
21、(30﹣10)
【解析】
AB的黄金分割点有两个,一种情况是AC
如图所示:
则,即(20−AC):20=(−1):2,
解得AC=30−10.
∴他应至少再走30−10米才最理想,
故答案为:30−10.
本题考查黄金分割的知识,熟练掌握黄金分割比例即可解答.
22、-1
【解析】
设方程x2+mx-1=0的两根为x1、x2,根据根与系数的关系可得出x1•x2=﹣1,结合x1=1即可求出x2,此题得解.
【详解】
解:设方程x2+mx-1=0的两根为x1、x2,则:x1•x2=﹣1.
∵x1=1,∴x2=﹣1.
故答案为:﹣1.
本题考查了根与系数的关系,熟练掌握两根之积等于是解题的关键.
23、4
【解析】
首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.
【详解】
解:解得:不等式的解集是,
故不等式的正整数解为1,2,3,4,共4个.
故答案为:4.
本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.
二、解答题(本大题共3个小题,共30分)
24、(1)B(9,11);(2)1;(3)存在,P(0,)
【解析】
(1)根据点C的坐标确定b的值,利用待定系数法求出点A坐标即可解决问题;
(2)在Rt△BCD中,BC=9,BD=AB=11,CD==12,OD=11﹣12=3,设DE=AE=x,在Rt△DEO中,根据DE2=OD2+OE2,构建方程即可解决问题;
(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.利用待定系数法求出直线BE′的解析式即可解决问题;
【详解】
解:(1)∵AB=11,四边形OABC是矩形,
∴OC=AB=11,
∴C(0,11),代入y=y=﹣x+b得到b=11,
∴直线AC的解析式为y=﹣x+11,
令y=0,得到x=9,
∴A(9,0),B(9,11).
(2)在Rt△BCD中,BC=9,BD=AB=11,
∴CD==12,
∴OD=11﹣12=3,
设DE=AE=x,
在Rt△DEO中,∵DE2=OD2+OE2,
∴x2=32+(9﹣x)2,
∴x=1,
∴AE=1.
(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.
∵E(4,0),
∴E′(﹣4,0),
设直线BE′的解析式为y=kx+b,则有
解得,
∴直线BE′的解析式为y=x+,
∴P(0,).
故答案为(1)B(9,11);(2)1;(3)存在,P(0,).
本题考查一次函数综合题、矩形的性质、翻折变换、勾股定理等知识,解题的关键是熟练掌握待定系数法解决问题,学会利用轴对称解决最短问题,属于中考压轴题.
25、(1);(2)成立,理由见解析.
【解析】
(1)取的中点,连接,根据同角的余角相等得到,然后易证,问题得解;
(2)在上取点,使,连接,同(1)的方法相同,证明即可;
【详解】
(1)证明:如图1,取的中点,连接,
四边形是正方形,
,,
,
,
,,
是正方形外角的平分线,
,
,,
,
在和中,
,
,
;
(2)如图2,在上取点,使,连接,
四边形是正方形,
,,
,
,
,,
是正方形外角的平分线,
,
,,
,
在和中,
,
,
;
此题是四边形综合题,主要考查的是正方形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用全等三角形的判定定理和性质定理是解题的关键,解答时,注意类比思想的正确运用.
26、(1)见解析;(2)见解析.
【解析】
(1)可证,易知三角形FCG为等腰直角三角形,即,再求出;
(2)添加辅助线,连接,在上截取,使得,连接,先求证,继而可证,在中,利用勾股定理即可求证.
【详解】
解:作
四边形是正方形
是等腰直角三角形
连接,在上截取,使得,连接
为等腰直角三角形,
四边形是正方形
三点共线
为的中点,
在中,
即
本题是正方形与三角形的综合,主要考查了三角形全等、正方形的性质、勾股定理,辅助线的添加难度较大.
题号
一
二
三
四
五
总分
得分
2025届内蒙古赤峰市翁牛特旗乌丹六中学九年级数学第一学期开学教学质量检测试题【含答案】: 这是一份2025届内蒙古赤峰市翁牛特旗乌丹六中学九年级数学第一学期开学教学质量检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年内蒙古翁牛特旗乌丹三中学等学校数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年内蒙古翁牛特旗乌丹三中学等学校数学九年级第一学期开学学业水平测试模拟试题【含答案】,共26页。试卷主要包含了选择题,四象限,则的值是,解答题等内容,欢迎下载使用。
2023-2024学年内蒙古翁牛特旗乌丹第六中学数学九上期末教学质量检测试题含答案: 这是一份2023-2024学年内蒙古翁牛特旗乌丹第六中学数学九上期末教学质量检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。