内蒙古开来中学2024-2025学年九上数学开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)数据3,7,2,6,6的中位数是( )
A.6B.7C.2D.3
2、(4分)若x>y,则下列式子错误的是( )
A.x﹣3>y﹣3B.﹣3x>﹣3yC.x+3>y+3D.
3、(4分)如图,△ABC的周长为20,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=8,则MN的长度为()
A.B.2C.D.3
4、(4分)如图 ,矩形 ABCD 中,AB>AD,AB=a,AN 平分∠DAB,DM⊥AN 于点 M,CN⊥AN于点 N.则 DM+CN 的值为(用含 a 的代数式表示)( )
A.aB. aC.D.
5、(4分)正方形ABCD中,点E、F分别在CD、BC边上,是等边三角形.以下结论:①;②;③;④EF的垂直平分线是直线AC.正确结论个数有( )个.
A.1B.2C.3D.4
6、(4分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
则这些运动员成绩的中位数、众数分别为
A.、B.、C.、D.、
7、(4分)下列计算错误的是( )
A.﹣=B.÷2=
C.D.3+2=5
8、(4分)下列函数关系式中,y是x的反比例函数的是
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)将直线y=﹣4x+3向下平移4个单位,得到的直线解析式是_____.
10、(4分)如图,点A、B都在反比例函数y=(x>0)的图像上,过点B作BC∥x轴交y轴于点C,连接AC并延长交x轴于点D,连接BD,DA=3DC,S△ABD=1.则k的值为_______.
11、(4分)如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=________度.
12、(4分)甲、乙两家人,相约周末前往中梁国际慢城度周末,甲、乙两家人分别从上桥和童家桥驾车同时出发,匀速前进,且甲途经童家桥,并以相同的线路前往中梁国际慢城. 已知乙的车速为30千米/小时,设两车之间的里程为y(千米),行驶时间为x(小时),图中的折线表示从两家人出发至甲先到达终点的过程中y(千米)与x(小时)的函数关系,根据图中信息,甲的车速为_______千米/小时.
13、(4分)Rt△ABC与直线l:y=﹣x﹣3同在如图所示的直角坐标系中,∠ABC=90°,AC=2,A(1,0),B(3,0),将△ABC沿x轴向左平移,当点C落在直线l上时,线段AC扫过的面积等于_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知y-2与x+3成正比例,且当x=-4时,y=0,求当x=-1时,y的值.
15、(8分)已知等腰三角形的周长为, 底边长是腰长的函数.
写出这个函数关系式;
求自变量的取值范围;
画出这个函数的图象.
16、(8分)阅读下列材料,并解爷其后的问题:
我们知道,三角形的中位线平行于第一边,且等于第三边的一半,我们还知道,三角形的三条中位线可以将三角形分成四个全等的一角形,如图1,若D、E、F分别是三边的中点,则有,且
(1)在图1中,若的面积为15,则的面积为___________;
(2)在图2中,已知E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形EFGH是平行四边形;
(3)如图3中,已知E、F、G、H分别是AB、BC、CD、AD的中点,,则四边形EFGH的面积为___________.
17、(10分)端午节放假期间,某学校计划租用辆客车送名师生参加研学活动,现有甲、乙两种客车,它们的载客量和租金如下表,设租用甲种客车辆,租车总费用为元.
(1)求出(元)与(辆)之间函数关系式;
(2)求出自变量的取值范围;
(3)选择怎样的租车方案所需的费用最低?最低费用多少元?
18、(10分)阅读下列材料:
小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积.
小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积他把这种解决问题的方法称为构图法.
请回答:
(1)①图1中△ABC的面积为________;
②图1中过O点画一条线段MN,使MN=2AB,且M、N在格点上.
(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).利用构图法在图2中画出三边长分别为、2、的格点△DEF.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,矩形中,,连接,以对角线为边按逆时针方向作矩形,使矩形矩形;再连接,以对角线为边,按逆时针方向作矩形,使矩形矩形, ..按照此规律作下去,若矩形的面积记作,矩形的面积记作,矩形的面积记作, ... 则的值为__________.
20、(4分)正比例函数图象经过,则这个正比例函数的解析式是_________.
21、(4分)若有意义,则m能取的最小整数值是__.
22、(4分)如图,在□ABCD中,对角线AC、BD相交于O,AC+BD=10,BC=3,则△AOD的周长为 .
23、(4分)在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2OB2.则点B2的坐标_______
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.
(1)求证:BD平分∠ABC;
(2)连接EC,若∠A=30°,DC=,求EC的长.
25、(10分)已知,在四边形ABCD中,点E、点F分别为AD、BC的中点,连接EF.
(1)如图1,AB∥CD,连接AF并延长交DC的延长线于点G,则AB、CD、EF之间的数量关系为 ;
(2)如图2,∠B=90°,∠C=150°,求AB、CD、EF之间的数量关系?
(3)如图3,∠ABC=∠BCD=45°,连接AC、BD交于点O,连接OE,若AB=,CD=2,BC=6,则OE= .
26、(12分)解不式并把它的解集表示在数轴上.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
【详解】
解:将数据小到大排列 2,3,6,6,7,
所以中位数为6,
故选A.
本题考查了中位数,正确理解中位数的意义是解题的关键.
2、B
【解析】
根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:
A、不等式两边都减3,不等号的方向不变,正确;
B、乘以一个负数,不等号的方向改变,错误;
C、不等式两边都加3,不等号的方向不变,正确;
D、不等式两边都除以一个正数,不等号的方向不变,正确.
故选B.
3、B
【解析】
证明△BNA≌△BNE,得到BE=BA,AN=NE,同理得到CD=CA,AM=MD,求出DE,根据三角形中位线定理计算即可.
【详解】
解:在△BNA和△BNE中,
,
∴△BNA≌△BNE(ASA)
∴BE=BA,AN=NE,
同理,CD=CA,AM=MD,
∴DE=BE+CD−BC=BA+CA−BC=20−8−8=4,
∵AN=NE,AM=MD,
∴MN=DE=2,
故选:B.
本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
4、C
【解析】
根据“AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N”得∠MDC=∠NCD=45°,cs45°= ,所以DM+CN=CDcs45°;再根据矩形ABCD,AB=CD=a,DM+CN的值即可求出.
【详解】
∵AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N,
∴∠ADM=∠MDC=∠NCD=45°,
∴=CD,
在矩形ABCD中,AB=CD=a,
∴DM+CN=acs45°=a.
故选C.
此题考查矩形的性质,解直角三角形,解题关键在于得到cs45°=
5、C
【解析】
由题意可证△ABF≌△ADE,可得BF=DE,即可得EC=CF,由勾股定理可得EF=EC,由平角定义可求∠AED=75°,由AE=AF,EC=FC可证AC垂直平分EF,则可判断各命题是否正确.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD=BC=CD,∠B=∠C=∠D=∠DAB=90°,
∵△AEF是等边三角形,
∴AE=AF=EF,∠EAF=∠AEF=60°,
∵AD=AB,AF=AE,
∴△ABF≌△ADE,
∴BF=DE,
∴BC−BF=CD−DE,
∴CE=CF,故①正确;
∵CE=CF,∠C=90°;
∴EF=CE,∠CEF=45°;
∴AF=CE,
∴CF=AF,故③错误;
∵∠AED=180°−∠CEF−∠AEF;
∴∠AED=75°;故②正确;
∵AE=AF,CE=CF;
∴AC垂直平分EF;故④正确.
故选:C.
本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,线段垂直平分线的判定,熟练运用这些性质和判定是解决本题的关键.
6、C
【解析】
根据中位数和众数的概念进行求解.
【详解】
解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80
众数为:1.75;
中位数为:1.1.
故选C.
本题考查1.中位数;2.众数,理解概念是解题关键.
7、D
【解析】
利用二次根式加减乘除的运算方法逐一计算得出答案,进一步比较选择即可
【详解】
A. ﹣=,此选项计算正确;
B. ÷2=, 此选项计算正确;
C. ,此选项计算正确;
D. 3+2.此选项不能进行计算,故错误
故选D
此题考查二次根式的混合运算,掌握运算法则是解题关键
8、D
【解析】
根据反比例函数的定义,反比例函数的一般式是y=kx(k≠0),可以判定函数的类型.
【详解】
A. 是一次函数,故此选项错误;
B. 是正比例函数,故此选项错误;
C. 不是反比例函数,故此选项错误;
D. 是反比例函数,故此选项正确。
故选D.
本题考查反比例函数的定义,熟练掌握反比例函数的定义对选项进行判断是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=﹣4x﹣1
【解析】
根据上加下减的法则可得出平移后的函数解析式.
【详解】
解:将直线y=﹣4x+3向下平移4个单位得到直线l,
则直线l的解析式为:y=﹣4x+3﹣4,即y=﹣4x﹣1.
故答案是:y=﹣4x﹣1
本题考查了一次函数图象与几何变换的知识,难度不大,掌握上加下减的法则是关键.
10、2.
【解析】
过点A作AN⊥x轴交x轴于点N,交BC于点M,设B(x,y),则BC=x,MN=y,由平行线分线段成比例定理得AM=2y,根据 =1 ,即可求得xy=k的值.
【详解】
解:如图,过点A作AN⊥x轴交x轴于点N,交BC于点M,设B(x,y),则BC=x,MN=y,
∵BC∥x轴,DA=3DC,
∴AN=3MN,AM=2MN
∴MN=y,AM =2y
∵ ,S△ABD=1
∴ ,
∴xy=2,
∵反比例函数y=(x>0),
∴k=xy=2.
故答案为:2.
本题考查平行线分线段成比例定理,反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
11、67.1.
【解析】
由四边形ABCD是正方形,可得AB=BC,∠CBD=41°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.
【详解】
解:因为四边形ABCD是正方形,
所以AB=BC,∠CBD=41°,
根据折叠的性质可得:A′B=AB,
所以A′B=BC,
所以∠BA′C=∠BCA′==67.1°.
故答案为:67.1.
此题考查了折叠的性质与正方形的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.
12、1
【解析】
根据题意和函数图象可知,甲小时行驶的路程=乙小时行驶的路程+10,从而可以求得甲的车速.
【详解】
解:由题意可得,
甲的车速为:千米/小时,
故答案为1.
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
13、1
【解析】
根据题意作出图形,利用勾股定理求出BC,求出C’的坐标,再根据矩形的面积公式即可求解.
【详解】
解:∵∠ABC=90°,AC=2,A(1,0),B(3,0),
∴AB=2,
∴BC==4,
∴点C的坐标为(3,4),
当y=4时,4=﹣x﹣3,得x=﹣7,
∴C′(﹣7,4),
∴CC′=10,
∴当点C落在直线l上时,线段AC扫过的面积为:10×4=1,
故答案为:1.
此题主要考查平移的性质,解题的关键是熟知一次函数的图像与性质.
三、解答题(本大题共5个小题,共48分)
14、2.
【解析】
利用正比例函数的定义,设y-1=k(x+3),然后把已知的对应值代入求出k得到y与x之间的函数关系式;计算自变量为-1对应的y的值即可
【详解】
由题意,设 y-1=k(x+3)(k≠0),
得:0-1=k(-4+3).
解得:k=1.
所以当x=-1时,y=1(-1+3)+1=2.
即当x=-1时,y的值为2.
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b,将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数的性质.
15、(1);(2);(3)见详解.
【解析】
(1)根据等腰三角形的周长计算公式表示即可;
(2)根据构成三角形三边的关系即可确定自变量的取值范围;
(3)可取两个点,在平面直角坐标系中描点、连线即可.
【详解】
解:(1)这个函数关系式为;
(2)由题意得,即,
解得,
所以自变量的取值范围为;
(3)当时,;当时,,函数关系式()的图象如图所示,
本题考查了一次函数关系式、函数自变量的取值范围及函数的图象,结合等腰三角形的性质及三角形三边的关系是解题的关键.
16、(1);(2)见解析;(3)1.
【解析】
(1)由三角形中位线定理得出DF∥BC,且DF=BC,△ADF≌△DBE≌△FEC≌△EFD,得出△DEF的面积=△ABC的面积=即可;
(2)连接BD,证出EH是△ABD的中位线,FG是△BCD的中位线,由三角形中位线定理得出EH∥BD,EH=BD,FG∥BD,FG=BD,得出EH∥FG,EH=FG,即可得出结论;
(3)证出EH是△ABD的中位线,FG是△BCD的中位线,由三角形中位线定理得出EH∥BD,EH=BD= ,FG∥BD,FG=BD,得出EH∥FG,EH=FG,证出四边形EFGH是平行四边形,同理:EF∥AC,EF=AC=2,证出EH⊥EF,得出四边形EFGH是矩形,即可得出结果.
【详解】
(1)解:∵D、E、F分别是△ABC三边的中点,
则有DF∥BC,且DF=BC,△ADF≌△DBE≌△FEC≌△EFD,
∴△DEF的面积=△ABC的面积=;
故答案为;
(2)证明:连接BD,如图2所示:
∵E、F、G、H分别是AB、BC、CD、AD的中点,
∴EH是△ABD的中位线,FG是△BCD的中位线,
∴EH∥BD,EH=BD,FG∥BD,FG=BD,
∴EH∥FG,EH=FG,
∴四边形EFGH是平行四边形;
(3)解:∵E、F、G、H分别是AB、BC、CD、AD的中点,
∴EH是△ABD的中位线,FG是△BCD的中位线,
∴EH∥BD,EH=BD=,FG∥BD,FG=BD,
∴EH∥FG,EH=FG,
∴四边形EFGH是平行四边形,
同理:EF∥AC,EF=AC=2,
∵AC⊥BD,
∴EH⊥EF,
∴四边形EFGH是矩形,
∴四边形EFGH的面积=EH×EF=×2=1.
故答案为(1);(2)见解析;(3)1.
本题是四边形综合题目,考查三角形中位线定理、平行四边形的判定、矩形的判定与性质等知识;熟练掌握三角形中位线定理,证明四边形EFGH是平行四边形是解题的关键.
17、(1);(2),且为整数;(3)租用甲种客车辆,租用乙种客车辆,所需的费用最低,最低费用元.
【解析】
(1)根据租用甲种客车x辆,则租用乙种客车(6-x)辆,进而表示出总租金即可.
(2)由实际生活意义确定自变量的取值范围.
(3)由题意可列出一元一次不等式方程组.由此推出y随x的增大而增大.
【详解】
解:(1)设租用甲种客车辆,则租用乙种客车辆,
由题意可得出:;
(2)由得:.
又,
的取值范围是:,且为整数;
(3),且为整数,
取或或
中
随的增大而增大
当时,的值最小.
其最小值元.
则租用甲种客车辆,租用乙种客车辆,所需的费用最低,最低费用元.
故答案为(1);(2),且为整数;(3)租用甲种客车辆,租用乙种客车辆,所需的费用最低,最低费用元.
本题考查一次函数的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.要会利用题中的不等关系找到x的取值范围,并根据函数的增减性求得y的最小值是解题的关键.
18、(1)① ,②见解析; (2)见解析.
【解析】
分析:
(1)①如图3,由S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF结合已知条件即可求得△ABC的面积了;②如图4,对照图形过点O作OM∥AB,且使OM=AB,作ON∥AB,且使ON=AB,则根据过直线为一点有且只有一条直线平行于已知直线可知点O、M、N在同一直线上,由此所得线段MN=2AB;
(2)如图5,按照题中构图法结合勾股定理画出△DEF即可.
详解:
(1)① 如图3,S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF=;
②如图所示,线段MN即为所求:
(2)如图5所示,△DEF即为所求.
点睛:(1)“构造如图3所示的正方形DECF,由此得到,S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF”是解答第1小题的关键;(2“由勾股定理在6×6网格中找到使DE=,EF=,DF=的点D、E、F的位置”是解答第2小题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
首先根据矩形的性质,求出AC,根据边长比求出面积比,依次类推,得出规律,即可得解.
【详解】
∵四边形ABCD是矩形,
∴AD⊥DC,
∴AC=,
∵按逆时针方向作矩形ABCD的相似矩形AB1C1C,
∴矩形AB1C1C的边长和矩形ABCD的边长的比为:2
∴矩形AB1C1C的面积和矩形ABCD的面积的比5:4,
∵矩形ABCD的面积=2×1=2,
∴矩形AB1C1C的面积=,
依此类推,矩形AB2C2C1的面积和矩形AB1C1C的面积的比5:4
∴矩形AB2C2C1的面积=
∴矩形AB3C3C2的面积=,
按此规律第n个矩形的面积为:
则
故答案为:.
本题考查了矩形的性质,勾股定理,相似多边形的性质,解此题的关键是能根据求出的结果得出规律.
20、
【解析】
设解析式为y=kx,再把(3,−6)代入函数解析式即可算出k的值,进而得到解析式.
【详解】
解:设这个正比例函数的解析式为y=kx(k≠0),
∵正比例函数的图象经过点(3,−6),
∴−6=3k,
解得k=−2,
∴y=−2x.
故答案是:y=−2x.
此题主要考查了待定系数法求正比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.
21、1
【解析】
根据二次根式的意义,先求m的取值范围,再在范围内求m的最小整数值.
【详解】
∵若有意义
∴3m﹣1≥0,解得m≥
故m能取的最小整数值是1
本题考查了二次根式的意义以及不等式的特殊解等相关问题.
22、8
【解析】试题分析:根据平行四边形的性质可得:OA+OD=(AC+BD)=5,AD=BC=3,则△AOD的周长为5+3=8.
考点:平行四边形的性质.
23、()
【解析】
根据题意得出B点坐标变化规律,进而得出点B2018的坐标位置,进而得出答案.
【详解】
解:∵△AOB是等腰直角三角形,OA=1,
∴AB=OA=1,
∴B(1,1),
将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,
再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,
∴每4次循环一周,B1(2,-2),B2(-4,-4),B3(-8,8),B4(16,16),
∵2÷4=503…1,
∴点B2与B1同在一个象限内,
∵-4=-22,8=23,16=24,
∴点B2(22,-22).
故答案为:(22,-22).
此题主要考查了点的坐标变化规律,得出B点坐标变化规律是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2).
【解析】
(1)直接利用直角三角形的性质得出,再利用DE∥BC,得出∠2=∠3,进而得出答案;
(2)利用已知得出在Rt△BCD中,∠3=60°,,得出DB的长,进而得出EC的长.
【详解】
(1)证明:∵AD⊥DB,点E为AB的中点,
∴.
∴∠1=∠2.
∵DE∥BC,
∴∠2=∠3.
∴∠1=∠3.
∴BD平分∠ABC.
(2)解:∵AD⊥DB,∠A=30°,
∴∠1=60°.
∴∠3=∠2=60°.
∵∠BCD=90°,
∴∠4=30°.
∴∠CDE=∠2+∠4=90°.
在Rt△BCD中,∠3=60°,,
∴DB=2.
∵DE=BE,∠1=60°,
∴DE=DB=2.
∴.
此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.
25、(1)AB+CD=2EF;(2)4EF2=AB2+CD2+AB•CD,证明详见解析;(3).
【解析】
(1)根据三角形的中位线和全等三角形的判定和性质解答即可;
(2)如图2中,作CK⊥BC,连接AF,延长AF交CK于K.连接DK,作DH⊥CK于H.首先证明△AFB≌△KFC,推出AB=CK,再利用勾股定理,三角形的中位线定理即可解决问题;
(3)如图3中,以点B为原点,BC为x轴,建立平面直角坐标系如图所示.想办法求出点E、O的坐标即可解决问题;
【详解】
解:(1)结论:AB+CD=2EF,
理由:如图1中,
∵点E、点F分别为AD、BC的中点,
∴BF=FC,AE=ED,
∵AB∥CD,
∴∠ABF=∠GCF,
∵∠BFA=∠CFG,
∴△ABF≌△GCF(ASA),
∴AB=CG,AF=FG,
∵AE=ED,AF=FG,
∴2EF=DG=DC+CG=DC+AB;
∴AB+CD=2EF;
(2)如图2中,作CK⊥BC,连接AF,延长AF交CK于K.连接DK,作DH⊥CK于H.
∵∠ABF=∠KCF,BF=FC,∠AFB=∠CFK,
∴△AFB≌△KFC,
∴AB=CK,AF=FK,
∵∠BCD=150°,∠BCK=90°,
∴∠DCK=120°,
∴∠DCH=60°,
∴CH=CD,DH=CD,
在Rt△DKH中,DK2=DH2+KH2=(CD)2+(AB+CD)2=AB2+CD2+AB•CD,
∵AE=ED,AF=FK,
∴EF=DK,
∴4EF2=DK2,
∴4EF2=AB2+CD2+AB•CD.
(3)如图3中,以点B为原点,BC为x轴,建立平面直角坐标系如图所示.
由题意:A(1,1),B(0,0),D(4,2),
∵AE=ED,
∴E(,),
∵AC的解析式为y=-x+,BD的解析式为y=x,
由,解得,
∴O(,),
∴OE==.
故答案为(1)AB+CD=2EF;(2)4EF2=AB2+CD2+AB•CD,证明详见解析;(3).
本题考查四边形综合题、全等三角形的判定和性质、三角形的中位线定理、解直角三角形、平面直角坐标系、一次函数的应用等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会建立平面直角坐标系解决问题,属于中考压轴题.
26、x≤-1
【解析】
分析:去分母、去括号,移项合并同类项,然后求得解集.
详解:去分母得:6﹣3(3﹣x)≥2(2x﹣1)
去括号得: 6﹣9+3x≥4x﹣2
解得:x≤-1.
原不等式的解集在数轴上表示如下:
点睛:本题考查了解一元一次不等式、在数轴上表示不等式的解集.把不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
题号
一
二
三
四
五
总分
得分
批阅人
成绩
人数
2
3
2
3
4
1
甲种客车
乙种客车
载客量(人/辆)
租金(元/辆)
北京七中学2024-2025学年九上数学开学统考模拟试题【含答案】: 这是一份北京七中学2024-2025学年九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届内蒙古自治区呼和浩特市开来中学九上数学开学监测试题【含答案】: 这是一份2025届内蒙古自治区呼和浩特市开来中学九上数学开学监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届内蒙古呼和浩特开来中学数学九上开学联考试题【含答案】: 这是一份2025届内蒙古呼和浩特开来中学数学九上开学联考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。