南京鼓楼区宁海中学2024-2025学年九上数学开学复习检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)对于两组数据A,B,如果sA2>sB2,且,则( )
A.这两组数据的波动相同B.数据B的波动小一些
C.它们的平均水平不相同D.数据A的波动小一些
2、(4分)如图,在□ ABCD中,对角线AC、BD交于点O,下列式子一定成立的是( )
A.AC⊥BDB.AO=ODC.AC=BDD.OA=OC
3、(4分)关于一次函数,下列结论正确的是( )
A.图象过点B.图象与轴的交点是
C.随的增大而增大D.函数图象不经过第三象限
4、(4分)计算: ( )
A.5B.7C.-5D.-7
5、(4分)小明随机写了一串数字“1,2,3,3,2,1,1,1,2,2,3,3,”,则数字3出现的频数( )
A.6B.5C.4D.3
6、(4分)△ABC三边长分别为a、b、c,则下列条件不能判断△ABC是直角三角形的是( )
A.a=3,b=4,c=5B.a=4,b=5,c=6
C.a=6,b=8,c=10D.a=5,b=12,c=13
7、(4分)下列运算正确的是( )
A.B.=1
C.D..
8、(4分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为( )
A.6B.8C.16D.55
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知点(-4,y1),(2,y2)都在直线y=ax+2(a<0)上,则y1, y2的大小关系为_________ .
10、(4分)直角三角形的两直角边是3和4,则斜边是____________
11、(4分)若恒成立,则A+B=____.
12、(4分)两个面积都为的正方形纸片,其中一个正方形的顶点与另一个正方形对角线的交点重合,则两个正方形纸片重叠部分的面积为__________.
13、(4分)如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则的大小为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:(1)
(2)已知,,求的值.
15、(8分)如图,四边形ABCD的对角线AC⊥BD于点E,AB=BC,F为四边形ABCD外一点,且∠FCA=90°,∠CBF=∠DCB,
(1)求证:四边形DBFC是平行四边形;
(2)如果BC平分∠DBF,∠CDB=45°,BD=2,求AC的长.
16、(8分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
求甲、乙两种商品的每件进价;
该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
17、(10分)如图,已知E是▱ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.
(1)求证:△ABE≌△FCE.
(2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形。
18、(10分)直线过点,直线过点,求不等式的解集.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知直线y=kx+3经过点A(2,5)和B(m,-2),则m= ___________.
20、(4分)如图,点A,B在函数的图象上,点A、B的横坐标分别为、3,则△AOB的面积是_____.
21、(4分)为了了解我县八年级学生的视力情况,从中随机抽取名学生进行视力情况检查,这个问题中的样本容量是___.
22、(4分)如图,在中,,,,则__________.
23、(4分)如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=4,则AD=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,点A(a,b)在平面直角坐标系xOy中,点A到坐标轴的垂线段AB,AC与坐标轴围成矩形OBAC,当这个矩形的一组邻边长的和与积相等时,点A称作“垂点”,矩形称作“垂点矩形”.
(1)在点P(1,2),Q(2,-2),N(,-1)中,是“垂点”的点为 ;
(2)点M(-4,m)是第三象限的“垂点”,直接写出m的值 ;
(3)如果“垂点矩形”的面积是,且“垂点”位于第二象限,写出满足条件的“垂点”的坐标 ;
(4)如图2,平面直角坐标系的原点O是正方形DEFG的对角线的交点,当正方形DEFG的边上存在“垂点”时,GE的最小值为 .
25、(10分)如图,点在同一直线上,,,.求证:.
26、(12分)在矩形ABCD中,对角线AC、BD交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°.
(1)求证:△AOB是等边三角形;
(2)求∠BOE的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题解析:方差越小,波动越小.
数据B的波动小一些.
故选B.
点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
2、D
【解析】
试题解析:A、菱形的对角线才相互垂直.故不对.
B、平行四边形中,AO不一定等于OD,故不对.
C、只有平行四边形为矩形时,其对角线相等,故也不对.
D、平行四边形对角线互相平分.故该选项正确.
故选D.
3、D
【解析】
A、把点的坐标代入关系式,检验是否成立;
B、把y=0代入解析式求出x,判断即可;
C、根据一次项系数判断;
D、根据系数和图象之间的关系判断.
【详解】
解:A、当x=1时,y=1.所以图象不过(1,−1),故错误;
B、把y=0代入y=−2x+3,得x=,所以图象与x轴的交点是(,0),故错误;
C、∵−2<0,∴y随x的增大而减小,故错误;
D、∵−2<0,3>0,∴图象过一、二、四象限,不经过第三象限,故正确.
故选:D.
本题主要考查了一次函数的图象和性质.常采用数形结合的思想求解.
4、A
【解析】
先利用二次根式的性质进行化简,然后再进行减法运算即可.
【详解】
=6-1
=5,
故选A.
本题考查了二次根式的化简,熟练掌握是解题的关键.
5、C
【解析】
根据频数的定义可直接得出答案
【详解】
解:∵该串数字中,数字3出现了1次,
∴数字3出现的频数为1.
故选:C.
本题是对频数定义的考查,即频数是表示一组数据中符合条件的对象出现的次数.
6、B
【解析】
根据勾股定理进行判断即可得到答案.
【详解】
A.∵32+42=52,∴△ABC是直角三角形;
B.∵52+42≠62,∴△ABC不是直角三角形;
C.∵62+82=102,∴△ABC是直角三角形;
D.∵122+42=132,∴△ABC是直角三角形;
故选:B.
本题考查勾股定理的应用,解题的关键是掌握勾股定理.
7、D
【解析】
【分析】根据二次根式加减法则进行分析.同类二次根式才可合并.
【详解】
A. , 不是同类二次根式,不能合并,故本选项错误;
B. =,故本选项错误;
C. ,不是同类二次根式,不能合并,故本选项错误;
D. . 故本选项正确.
故选:D
【点睛】本题考核知识点:二次根式的加减.解题关键点:合并同类二次根式.
8、C
【解析】
运用正方形边长相等,结合全等三角形和勾股定理来求解即可.
【详解】
解:∵a、b、c都是正方形,
∴AC=CD,∠ACD=90°;
∵∠ACB+∠DCE=∠ACB+∠BAC=90°,
∴∠BAC=∠DCE,
∵∠ABC=∠CED=90°,AC=CD,
∴△ACB≌△DCE,
∴AB=CE,BC=DE;
在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,
即Sb=Sa+Sc=11+5=16,
故选:C.
此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y1>y2
【解析】
∵k=a<0,
∴y随x的增大而减小.
∵−4<2,∴y1>y2.
故答案为y1>y2.
10、1
【解析】
在直角三角形中,已知两直角边根据勾股定理可以计算斜边.
【详解】
在直角三角形中,三边边长符合勾股定理,
已知两直角边为3、4,则斜边边长==1,
故答案为 1.
本题考查了直角三角形中的运用,本题中正确的运用勾股定理求斜边的长是解题的关键.
11、2.
【解析】
根据异分母分式加减法法则将进行变形,继而由原等式恒成立得到关于A、B的方程组,解方程组即可得.
【详解】
,
又∵
∴,
解得,
∴A+B=2,
故答案为:2.
本题考查了分式的加减法,恒等式的性质,解二元一次方程组,得到关于A、B的方程组是解题的关键.
12、2
【解析】
两个面积相等的正方形无论它们各自位置如何,当其中一个正方形的顶点与另一个正方形对角线的交点重合时,此时的重合部分面积总是等于其中一个正方形面积的四分之一,据此求解即可.
【详解】
∵无论正方形位置关系如何,其重合部分面积不变,仍然等于其中一个正方形面积的四分之一,
∴重合部分面积=.
故答案为:2.
本题主要考查了正方形性质,熟练掌握相关概念是解题关键.
13、40°
【解析】
根据旋转的性质可得出AB=AD、∠BAD=100°,再根据等腰三角形的性质可求出∠B的度数,此题得解.
【详解】
根据旋转的性质,可得:AB=AD,∠BAD=100°,
∴∠B=∠ADB=×(180°−100°)=40°.
故填:40°.
本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出∠B的度数是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)8.
【解析】
(1)根据二次根式的乘除法和加减法可以解答本题;
(2)根据、的值即可求得所求式子的值.
【详解】
(1)解:原式
;
(2)解:原式
.
本题考查了二次根式的化简求值,分母有理化,解答本题的关键是明确二次根式化简求值的方法.
15、(1)证明见解析;(2)AC=2.
【解析】
(1)证明四边形DBCF的两组对边分别平行;(2)作CM⊥BF于F,△CFM是等腰直角三角形,求出CM的长即可得到AC的长.
【详解】
解:(1)证明:∵AC⊥BD,∠FCA=90°,
∴∠AEB=∠FCA=90°,
∴BD∥CF.
∵∠CBF=∠DCB.
∴CD∥BF,
∴四边形DBFC是平行四边形;
(2)解:∵四边形DBFC是平行四边形,
∴CF=BD=2,∠F=∠CDB=45°,
∵AB=BC,AC⊥BD,∴AE=CE,
作CM⊥BF于F,
∵BC平分∠DBF,∴CE=CM,
∴△CFM是等腰直角三角形,
∴CM=CF=,∴AE=CE=,
∴AC=2.
16、 甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件.
【解析】
【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;
设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.
【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,
根据题意得,,
解得,
经检验,是原方程的解,
答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;
甲乙两种商品的销售量为,
设甲种商品按原销售单价销售a件,则
,
解得,
答:甲种商品按原销售单价至少销售20件.
【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.
17、(1)见解析;(2)见解析
【解析】
(1)由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对应角相等,利用ASA可得出三角形ABE与三角形FCE全等;
(2)由△ABE与△FCE全等,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形,根据平行四边形的对角线互相平分得到AE=EF,BE=EC;再由∠AEC为三角形ABE的外角,利用外角的性质得到∠AEC等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE=∠EAB,利用等角对等边可得出AE=BE,可得出AF=BC,利用对角线相等的平行四边形为矩形可得出ABFC为矩形.
【详解】
证明:(1)∵四边形ABCD为平行四边形,
∴AB∥DC,
∴∠ABE=∠ECF,
又∵E为BC的中点,
∴BE=CE,
在△ABE和△FCE中,
∵ ,
∴△ABE≌△FCE(ASA);
(2)∵△ABE≌△FCE,
∴AB=CF,
又∵四边形ABCD为平行四边形,
∴AB∥CF,
∴四边形ABFC为平行四边形,
∴BE=EC,AE=EF,
又∵∠AEC=2∠ABC,且∠AEC为△ABE的外角,
∴∠AEC=∠ABC+∠EAB,
∴∠ABC=∠EAB,
∴AE=BE,
∴AE+EF=BE+EC,即AF=BC,
则四边形ABFC为矩形.
此题考考查矩形的判定,平行四边形的性质,全等三角形的判定与性质,解题关键在于掌握各判定定理
18、
【解析】
将代入,可解得k的值,将代入,可解得m的值,再将k和m的值代入不等式,解不等式即可
【详解】
解:将代入得:,解得:k=1;
将代入得:,解得:;
∴,
则可得
解得
故答案为:
本题考查待定系数法求一次函数的解析式以及不等式的解法,,比较简单,应熟练掌握
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】
由题意将点A(2,1)和B(m,-2),代入y=kx+3,即可求解得到m的值.
【详解】
解:∵直线y=kx+3经过点A(2,1)和B(m,-2),
∴,解得,
∴.
故答案为:-1.
本题考查一次函数图象性质,注意掌握点过一次函数图象即有点坐标满足一次函数解析式.
20、1
【解析】
过A作AC⊥x轴于C,过B作BD⊥x轴于D,由点A,B在函数的图象上,得到S△AOC=S△BOD=,求得A(m,),B(3m,),于是得到结论.
【详解】
解:过A作AC⊥x轴于C,过B作BD⊥x轴于D,
∵点A,B在函数的图象上,
∴S△AOC=S△BOD=,
∵点A、B的横坐标分别为m、3m,
∴A(m,),B(3m,),
∴S△AOB=S四边形ACDB=(+)×(3m-m)=1,
故答案为1.
本题考查了反比例函数系数k的几何意义,证得S△AOB=S四边形ACDB是解题的关键.
21、
【解析】
根据样本容量则是指样本中个体的数目,可得答案.
【详解】
为了了解我县八年级学生的视力情况,从中随机抽取1200名学生进行视力情况检查,在这个问题中,样本容量是1200,
故答案为:1200.
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
22、30.
【解析】
利用勾股逆定理推出∠C=90°,再利用三角形的面积公式,进行计算即可.
【详解】
解:∵,,
又∵
∴
∴∠C=90°
∴
故答案为:30
本题考查了勾股逆定理以及三角形的面积公式,掌握勾股定理是解题的关键.
23、2
【解析】
依据四边形ABCD是矩形,E是CD的中点,可得AB=CD=4,DE=2,由折叠可得,AE=AB=4,再根据勾股定理,即可得到AD的长.
【详解】
∵四边形ABCD是矩形,E是CD的中点,
∴AB=CD=4,DE=2,
由折叠可得,AE=AB=4,
又∵∠D=90°,
∴Rt△ADE中,
故答案为:2
本题主要考查了折叠问题以及勾股定理的运用,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.
二、解答题(本大题共3个小题,共30分)
24、(1)Q;(2)-;(3)(-4,),(-,4);(4)1
【解析】
(1)根据“垂点”的意义直接判断即可得出结论;
(2)根据“垂点”的意义建立方程即可得出结论;
(3)根据“垂点”的意义和矩形的面积建立方程即可得出结论;
(4)先确定出直线EF的解析式,利用“垂点”的意义建立方程,利用非负性即可确定出m的范围,即可得出结论.
【详解】
解:(1)∵P(1,2),∴1+2=3,1×2=2,
∵2≠3,∴点P不是“垂点”,
∵Q(2,﹣2),∴2+2=4,2×2=4,∴Q是“垂点”.
∵N(,﹣1),∴+1=×1=,
∵,∴点N不是“垂点”,
故答案为Q;
(2)∵点 M(﹣4,m)是第三象限的“垂点”,∴4+(﹣m)=4×(﹣m),∴m=﹣,
故答案为﹣;
(3)设“垂点”的坐标为(a,b),∴﹣a+b=﹣ab,
∵“垂点矩形”的面积为,∴﹣ab=.
即:﹣a+b=﹣ab=,
解得:a=﹣4,b=或a=﹣,b=4,∴“垂点”的坐标为(﹣4,)或(﹣,4),
故答案为(﹣4,)或(﹣,4),.
(4)设点E(m,0)(m>0),
∵四边形EFGH是正方形,∴F(0,m),y=﹣x+m.设边EF上的“垂点”的坐标为(a,﹣a+m),∴a+(﹣a+m)=a(﹣a+m)
∴a2﹣am=﹣m,∴(a﹣)2=≥0,∴m2﹣4m=m(m﹣4)≥0,
∵m>0,∴m﹣4≥0,∴m≥4,∴m的最小值为4,∴EG的最小值为2m=1,
故答案为1.
本题是四边形的综合题,主要考查了正方形的性质,矩形的面积公式,理解新定义和应用新定义的能力,解答本题的关键是用方程的思想解决问题.
25、详见解析
【解析】
先证出,由证明Rt△ABC≌Rt△DFE,得出对应边相等即可.
【详解】
解:证明:,
∴△ABC和△DEF都是直角三角形,
,
即,
在Rt△ABC和Rt△DFE中,
,
∴Rt△ABC≌Rt△DFE(HL),
∴.
本题考查了全等三角形的判定与性质;熟练掌握直角三角形全等的判定方法是解决问题的关键.
26、 (1)证明见解析;(2)∠BOE=75°.
【解析】
(1)由矩形ABCD,得到OA=OB,根据AE平分∠BAD,∠CAE=15°,即可证明△AOB是等边三角形;
(2)由等边三角形的性质,推出AB=OB,求出∠OBC的度数,根据等边三角形和等腰直角三角形的性质得到OB=BE,然后可求出∠BOE.
【详解】
(1)证明:∵四边形ABCD是矩形,
∴OA=OB,
∵AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∵∠CAE=15°,
∴∠BAC=60°,
∴△AOB是等边三角形.
(2)∵△AOB是等边三角形,
∴AB=OB,∠ABO=60°,
∴∠OBC=90°﹣60°=30°,
∵∠BAE=∠BEA=45°
∵AB=OB=BE,
∴∠BOE=∠BEO=(180°﹣30°)=75°.
本题主要考查了三角形的内角和定理,矩形的性质,等边三角形的性质和判定,角平分线的性质,等腰三角形的判定等知识点.
题号
一
二
三
四
五
总分
得分
江苏省南京鼓楼区五校联考2024-2025学年数学九上开学教学质量检测试题【含答案】: 这是一份江苏省南京鼓楼区五校联考2024-2025学年数学九上开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省南京鼓楼区29中学集团学校2024-2025学年九上数学开学达标测试试题【含答案】: 这是一份江苏省南京鼓楼区29中学集团学校2024-2025学年九上数学开学达标测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
福建省福州市鼓楼区屏东中学2024-2025学年数学九上开学达标检测模拟试题【含答案】: 这是一份福建省福州市鼓楼区屏东中学2024-2025学年数学九上开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

