南京鼓楼区宁海中学2024-2025学年九上数学开学复习检测试题【含答案】
展开
这是一份南京鼓楼区宁海中学2024-2025学年九上数学开学复习检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)对于两组数据A,B,如果sA2>sB2,且,则( )
A.这两组数据的波动相同B.数据B的波动小一些
C.它们的平均水平不相同D.数据A的波动小一些
2、(4分)如图,在□ ABCD中,对角线AC、BD交于点O,下列式子一定成立的是( )
A.AC⊥BDB.AO=ODC.AC=BDD.OA=OC
3、(4分)关于一次函数,下列结论正确的是( )
A.图象过点B.图象与轴的交点是
C.随的增大而增大D.函数图象不经过第三象限
4、(4分)计算: ( )
A.5B.7C.-5D.-7
5、(4分)小明随机写了一串数字“1,2,3,3,2,1,1,1,2,2,3,3,”,则数字3出现的频数( )
A.6B.5C.4D.3
6、(4分)△ABC三边长分别为a、b、c,则下列条件不能判断△ABC是直角三角形的是( )
A.a=3,b=4,c=5B.a=4,b=5,c=6
C.a=6,b=8,c=10D.a=5,b=12,c=13
7、(4分)下列运算正确的是( )
A.B.=1
C.D..
8、(4分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为( )
A.6B.8C.16D.55
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知点(-4,y1),(2,y2)都在直线y=ax+2(a<0)上,则y1, y2的大小关系为_________ .
10、(4分)直角三角形的两直角边是3和4,则斜边是____________
11、(4分)若恒成立,则A+B=____.
12、(4分)两个面积都为的正方形纸片,其中一个正方形的顶点与另一个正方形对角线的交点重合,则两个正方形纸片重叠部分的面积为__________.
13、(4分)如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则的大小为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:(1)
(2)已知,,求的值.
15、(8分)如图,四边形ABCD的对角线AC⊥BD于点E,AB=BC,F为四边形ABCD外一点,且∠FCA=90°,∠CBF=∠DCB,
(1)求证:四边形DBFC是平行四边形;
(2)如果BC平分∠DBF,∠CDB=45°,BD=2,求AC的长.
16、(8分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
求甲、乙两种商品的每件进价;
该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
17、(10分)如图,已知E是▱ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.
(1)求证:△ABE≌△FCE.
(2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形。
18、(10分)直线过点,直线过点,求不等式的解集.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知直线y=kx+3经过点A(2,5)和B(m,-2),则m= ___________.
20、(4分)如图,点A,B在函数的图象上,点A、B的横坐标分别为、3,则△AOB的面积是_____.
21、(4分)为了了解我县八年级学生的视力情况,从中随机抽取名学生进行视力情况检查,这个问题中的样本容量是___.
22、(4分)如图,在中,,,,则__________.
23、(4分)如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=4,则AD=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,点A(a,b)在平面直角坐标系xOy中,点A到坐标轴的垂线段AB,AC与坐标轴围成矩形OBAC,当这个矩形的一组邻边长的和与积相等时,点A称作“垂点”,矩形称作“垂点矩形”.
(1)在点P(1,2),Q(2,-2),N(,-1)中,是“垂点”的点为 ;
(2)点M(-4,m)是第三象限的“垂点”,直接写出m的值 ;
(3)如果“垂点矩形”的面积是,且“垂点”位于第二象限,写出满足条件的“垂点”的坐标 ;
(4)如图2,平面直角坐标系的原点O是正方形DEFG的对角线的交点,当正方形DEFG的边上存在“垂点”时,GE的最小值为 .
25、(10分)如图,点在同一直线上,,,.求证:.
26、(12分)在矩形ABCD中,对角线AC、BD交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°.
(1)求证:△AOB是等边三角形;
(2)求∠BOE的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题解析:方差越小,波动越小.
数据B的波动小一些.
故选B.
点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
2、D
【解析】
试题解析:A、菱形的对角线才相互垂直.故不对.
B、平行四边形中,AO不一定等于OD,故不对.
C、只有平行四边形为矩形时,其对角线相等,故也不对.
D、平行四边形对角线互相平分.故该选项正确.
故选D.
3、D
【解析】
A、把点的坐标代入关系式,检验是否成立;
B、把y=0代入解析式求出x,判断即可;
C、根据一次项系数判断;
D、根据系数和图象之间的关系判断.
【详解】
解:A、当x=1时,y=1.所以图象不过(1,−1),故错误;
B、把y=0代入y=−2x+3,得x=,所以图象与x轴的交点是(,0),故错误;
C、∵−2<0,∴y随x的增大而减小,故错误;
D、∵−2<0,3>0,∴图象过一、二、四象限,不经过第三象限,故正确.
故选:D.
本题主要考查了一次函数的图象和性质.常采用数形结合的思想求解.
4、A
【解析】
先利用二次根式的性质进行化简,然后再进行减法运算即可.
【详解】
=6-1
=5,
故选A.
本题考查了二次根式的化简,熟练掌握是解题的关键.
5、C
【解析】
根据频数的定义可直接得出答案
【详解】
解:∵该串数字中,数字3出现了1次,
∴数字3出现的频数为1.
故选:C.
本题是对频数定义的考查,即频数是表示一组数据中符合条件的对象出现的次数.
6、B
【解析】
根据勾股定理进行判断即可得到答案.
【详解】
A.∵32+42=52,∴△ABC是直角三角形;
B.∵52+42≠62,∴△ABC不是直角三角形;
C.∵62+82=102,∴△ABC是直角三角形;
D.∵122+42=132,∴△ABC是直角三角形;
故选:B.
本题考查勾股定理的应用,解题的关键是掌握勾股定理.
7、D
【解析】
【分析】根据二次根式加减法则进行分析.同类二次根式才可合并.
【详解】
A. , 不是同类二次根式,不能合并,故本选项错误;
B. =,故本选项错误;
C. ,不是同类二次根式,不能合并,故本选项错误;
D. . 故本选项正确.
故选:D
【点睛】本题考核知识点:二次根式的加减.解题关键点:合并同类二次根式.
8、C
【解析】
运用正方形边长相等,结合全等三角形和勾股定理来求解即可.
【详解】
解:∵a、b、c都是正方形,
∴AC=CD,∠ACD=90°;
∵∠ACB+∠DCE=∠ACB+∠BAC=90°,
∴∠BAC=∠DCE,
∵∠ABC=∠CED=90°,AC=CD,
∴△ACB≌△DCE,
∴AB=CE,BC=DE;
在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,
即Sb=Sa+Sc=11+5=16,
故选:C.
此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y1>y2
【解析】
∵k=a
相关试卷
这是一份江苏省南京鼓楼区五校联考2024-2025学年数学九上开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省南京鼓楼区29中学集团学校2024-2025学年九上数学开学达标测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份福建省福州市鼓楼区屏东中学2024-2025学年数学九上开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。