![南昌艾溪湖中学2024年九年级数学第一学期开学教学质量检测模拟试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16287695/0-1729809367218/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![南昌艾溪湖中学2024年九年级数学第一学期开学教学质量检测模拟试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16287695/0-1729809367267/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![南昌艾溪湖中学2024年九年级数学第一学期开学教学质量检测模拟试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16287695/0-1729809367294/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
南昌艾溪湖中学2024年九年级数学第一学期开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在口ABCD中,对角线AC、BD交于点O.若AC=4,BD=5,BC=3,则△BOC的周长为( )
A.6B.7.5C.8D.12
2、(4分)某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( )
A.50mB.100mC.160mD.200m
3、(4分)下列二次根式是最简二次根式的是( )
A.B.C.D.
4、(4分)在直角坐标系中,点关于原点对称的点的坐标是( )
A.B.C.D.
5、(4分)若关于的不等式组的整数解共5个,则的取值范围是( )
A.B.C.D.
6、(4分)如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是( )
A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC
7、(4分)小李家装修地面,已有正三角形形状的地砖,现打算购买不同形状的另一种正多边形地砖,与正三角形地砖一起铺设地面,则小李不应购买的地砖形状是( )
A.正方形B.正六边形
C.正八边形D.正十二边形
8、(4分)已知:如图,在长方形ABCD中,AB=4,AD=1.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为秒,当的值为_____秒时,△ABP和△DCE全等.
A.1B.1或3C.1或7D.3或7
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)长方形的周长为,其中一边长为,面积为,则与的关系可表示为___.
10、(4分)定义运算ab=a2﹣2ab,下面给出了关于这种运算的几个结论:
①25=﹣16;
②是无理数;
③方程xy=0不是二元一次方程:
④不等式组的解集是﹣<x<﹣.
其中正确的是______(填写所有正确结论的序号)
11、(4分)抛物线,当随的增大而减小时的取值范围为______.
12、(4分)如图,,,,,的长为________;
13、(4分)y=(2m﹣1)x3m﹣2+3是一次函数,则m的值是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,正方形ABCD的边长为4厘米,E为AD边的中点,F为AB边上一点,动点P从点B出发,沿B→C→D→E,向终点E以每秒a厘米的速度运动,设运动时间为t秒,△PBF的面积记为S.S与t的部分函数图象如图2所示,已知点M(1,)、N(5,6)在S与t的函数图象上.
(1)求线段BF的长及a的值;
(2)写出S与t的函数关系式,并补全该函数图象;
(3)当t为多少时,△PBF的面积S为4.
15、(8分)如图,在中,点是对角线的中点,点在上,且,连接并延长交于点F.过点作的垂线,垂足为,交于点.
(1)求证:;
(2)若.
①求证:;
②探索与的数量关系,并说明理由.
16、(8分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
(2)如果先进行精加工,然后进行粗加工.
①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?
17、(10分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.△ABC的三个顶点都在格点上.
⑴ 在线段AC上找一点P(不能借助圆规),使得,画出点P的位置,并说明理由.
⑵ 求出⑴中线段PA的长度.
18、(10分)如图,矩形的对角线垂直平分线与边、分别交于点,求证:四边形为菱形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为 .
20、(4分)若等腰三角形的顶角与一个底角度数的比值等于,该等腰三角形的顶角为_________.
21、(4分)如图,的对角线相交于点,点分别是线段的中点,若厘米,的周长是厘米,则__________厘米.
22、(4分)如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.
23、(4分)在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AB=5,则BC=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,在四边形ABCD中,∠ADC=90°,AB=AC.点E、F分别为AC、BC的中点,连结EF、DE.
(1)请在图1中找出长度相等的两条线段?并说明理由.(AB=AC除外)
(2)如图2,当AC平分∠BAD,∠DEF=90°时,求∠BAD的度数.
(3)如图3,四边形CDEF是边长为2的菱形,求S四边形ABCD.
25、(10分)已知:如图,在四边形中,,为对角线的中点,为的中点,为的中点.求证:
26、(12分)已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断:
①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC.
请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:
(1)构造一个真命题,画图并给出证明;
(2)构造一个假命题,举反例加以说明.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
利用平行四边形的对角线互相平分的性质,解答即可.
【详解】
解:在平行四边形ABCD中,则OC=AC=2,OB=BD=2.1,
所以△BOC的周长为OB+OC+BC=2.1+2+3=7.1.
故选:B.
本题主要考查了平行四边形的性质问题,应熟练掌握,属于基础性题目,比较简单.
2、C
【解析】
分析:根据所建坐标系特点可设解析式为y=ax2+c的形式,结合图象易求B点和C点坐标,代入解析式解方程组求出a,c的值得解析式;再根据对称性求B3、B4的纵坐标后再求出总长度.
解答:解:
(1)由题意得B(0,0.5)、C(1,0)
设抛物线的解析式为:y=ax2+c
代入得 a=-c=
∴解析式为:y=-x2+
(2)当x=0.2时y=0.48
当x=0.6时y=0.32
∴B1C1+B2C2+B3C3+B4C4=2×(0.48+0.32)=1.6米
∴所需不锈钢管的总长度为:1.6×100=160米.
故选C.
3、C
【解析】
【分析】最简二次根式: ① 被开方数不含有分母(小数);
② 被开方数中不含有可以开方开得出的因数或因式;
【详解】A. ,被开方数含有分母,本选项不能选;
B. ,被开方数中含有可以开方开得出的因数,本选项不能选;
C. 是最简二次根式;
D. ,被开方数中含有可以开方开得出的因数,本选项不能选.
故选:C
【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式的条件.
4、D
【解析】
根据关于原点对称,横纵坐标都互为相反数,进行计算即可.
【详解】
解:(2,1)关于原点的对称点坐标为(﹣2,﹣1),故选:D.
本题考查关于原点对称,掌握关于原点对称,横纵坐标都互为相反数是解题的关键.
5、B
【解析】
求出不等式组的解集,再根据已知得出关于m的不等式组,即可打得出答案.
【详解】
解不等式①得:x
所以不等式组的解集是3⩽x
∴7
此题考查一元一次不等式组的整数解,解题关键在于掌握运算法则.
6、B
【解析】
A.菱形的对边平行且相等,所以AB∥DC,故本选项正确;
B.菱形的对角线不一定相等;
C.菱形的对角线互相垂直,所以AC⊥BD,故本选项正确;
D.菱形的对角线互相平分,所以OA=OC,故本选项正确.故选B.
7、C
【解析】
根据密铺的条件得,两多边形内角和必须凑出360°,进而判断即可.
【详解】
A. 正方形的每个内角是,∴能密铺;
B. 正六边形每个内角是, ∴能密铺;
C. 正八边形每个内角是,与无论怎样也不能组成360°的角,∴不能密铺;
D. 正十二边形每个内角是 ∴能密铺.
故选:C.
本题主要考查平面图形的镶嵌,根据平面镶嵌的原理:拼接点处的几个多边形的内角和恰好等于一个圆周角.
8、C
【解析】
分两种情况进行讨论,根据题意得出BP=2t=2和AP=11-2t=2即可求得.
【详解】
解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,
由题意得:BP=2t=2,
所以t=1,
因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,
由题意得:AP=11-2t=2,
解得t=2.
所以,当t的值为1或2秒时.△ABP和△DCE全等.
故选C.
本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
首先利长方形周长公式表示出长方形的另一边长,然后利用长方形的面积公式求解.
【详解】
解:∵长方形的周长为24cm,其中一边长为xcm,
∴另一边长为:(12-x)cm,
则y与x的关系式为.
故答案为:.
本题考查函数关系式,理解长方形的边长、周长以及面积之间的关系是关键.
10、
【解析】
先认真审题.理解新运算,根据新运算展开,求出后再判断即可.利用题中的新定义计算即可得到结果.
【详解】
①25=22-2×2×5=-16,故①正确;
②21=22-2×2×1=0,所以是有理数,故②错误;
③xy=x2-2xy=0,是二元二次方程,不是二元一次方程,故③正确;
④不等式组变形为,解得<x<,故④正确.
故的答案为:①③④
本题考查了整式的混合运算的应用,涉及了开方运算,方程的判断,不等式组的解集等,解此题的关键是能理解新运算的意义,题目比较好,难度适中.
11、(也可以)
【解析】
先确定抛物线的开口方向和对称轴,即可确定答案.
【详解】
解:∵的对称轴为x=1且开口向上
∴随的增大而减小时的取值范围为(也可以)
本题主要考查了二次函数增减性中的自变量的取值范围,其中确定抛物线的开口方向和对称轴是解答本题的关键.
12、12
【解析】
根据相似三角形的性质列比例式求解即可.
【详解】
∵,,,,
∴,
∴,
∴AC=12.
故答案为:12.
本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边的比,对应高的比,对应中线的比,对应角平分线的比,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方.
13、1
【解析】
根据一次函数的定义可得
【详解】
解:∵y=(2m﹣1)x3m﹣2+3是一次函数,
∴
解得m=1.
故答案为1.
考核知识点:一次函数.理解定义是关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)BF=3,a=1;(2)当0≤t≤4时,S=t;当4<t≤8时,S=6;当8<t≤10时,S=18-t.图像见解析;(3)t=或.
【解析】
试题分析:(1)根据图2可以看出,当t=5时,P在CD上,此时△PBF的高就为正方形的边长,底为BF,利用面积等于6,可求得BF,再根据t=1时,△PBF的面积为,可求得a的值;(2)由点P运动过程,可发现△PBF的面积有3种情况,分别是:当0≤t≤4时,此时P在AB上,当4<t≤8时,此时P在CD上,当8<t≤10时,此时P在AD上,分别求出解析式即可.再根据解析式可补全图像;(3)把S=4分别代入解析式中即可求出t值.
试题解析:(1)由题意可知,当t=5时,S△PBF=×4BF=6,BF=3.当t=1时,S△PBF=at×3=,a=1;(2)当0≤t≤4时,设S=kt,把(1,)代入得,k=,S=t;当4<t≤8时,S=6;当8<t≤10时,设S=mt+b,把(8,6),(10,3)代入,得,解得,S=18-t.综上所述,当0≤t≤4时,S=t;当4<t≤8时,S=6;当8<t≤10时,S=18-t,据此可补全图像,如下图:
(3)当S=4时,t=4,t=;18-t=4,t=.∴当t=或 t=时△PBF的面积S为4.
考点:1分段函数;2分类讨论;3数形结合.
15、(1)见解析;(2)①见解析,②,理由见解析.
【解析】
(1)根据平行四边形的性质得到∠OAF=∠OCE,证明△OAF≌△OCE,根据全等三角形的对应边相等证明结论;
(2)①过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,根据三角形的外角性质得到∠BAG=∠BGA;
②证明△AME≌△BNG,根据全等三角形的性质得到ME=NG,根据等腰直角三角形的性质得到BE=GC,根据(1)中结论证明即可.
【详解】
(1)证明:∵四边形是平行四边形,
∴,,
∴,
在和中,
,
∴
∴,
∵,
∴;
(2)①过作于,交于,过作于,
则,
∵,
∴,
∵,
∴,,
∵,
∴,又,
∴,
设,
则,,
∴;
②,
理由如下:∵,
∴,
∴,
在和中,
,
∴,
∴,
在等腰中,,
∴,
∴,
∵,
∴.
本题主要考查了平行四边形的性质,全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造全等三角形以及等腰直角三角形,利用全等三角形的对应边相等得出结论.
16、(1)应安排4天进行精加工,8天进行粗加工
(2)①=
②安排1天进行精加工,9天进行粗加工,可以获得最多利润为元
【解析】
解:(1)设应安排天进行精加工,天进行粗加工,
根据题意得
解得
答:应安排4天进行精加工,8天进行粗加工.
(2)①精加工吨,则粗加工()吨,根据题意得
=
②要求在不超过10天的时间内将所有蔬菜加工完,
解得
又在一次函数中,,
随的增大而增大,
当时,
精加工天数为=1,
粗加工天数为
安排1天进行精加工,9天进行粗加工,可以获得最多利润为元.
17、 (1)详见解析;(2)线段PA的长度为.
【解析】
试题分析:
(1)利用方格纸可作出BC的垂直平分线交AC于点P,点P为所求的点,由线段垂直平分线的性质和勾股定理即可证明此时:PC2-PA2=AB2;
(2)由图中信息可得AB=4,AC=6,设PA=,则PC=PB=6-,在Rt△PAB中,由勾股定理建立方程解出即可.
试题解析:
⑴ 如图,利用方格纸作BC的垂直平分线,分别交AC、BC于点P、Q,则PC=PB.
∵在△APB中,∠A=90°,
∴,即: ,
∴ .
⑵ 由图可得:AC=6,AB=4,设PA=x,则PB=PC=6-x
∵在△PAB中,∠A=90°,
∴ ,解得:,即PA=.
答:线段PA的长度为.
18、见解析
【解析】
由ASA证明△AOE≌△COF,得出对应边相等EO=FO,证出四边形AFCE为平行四边形,再由FE⊥AC,即可得出结论.
【详解】
解:证明:因为四边形的矩形
,
因为平分
.
,
所以四边形是平行四边形
所以四边形是菱形(对角线互相垂直的平行四边形是菱形)
本题考查了矩形的性质、菱形的判定方法、平行四边形的判定方法、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、48°
【解析】
试题分析:因为AB∥CD,∠B=68°,所以∠CFE=∠B=68°,又∠CFE=∠D+∠E, ∠E=20°,所以∠D=∠CFE-∠E=68°-20°=48°.
考点:1.平行线的性质2.三角形的外角的性质
20、360
【解析】
根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.
【详解】
∵△ABC中,AB=AC,
∴∠B=∠C,
∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k= ,
∴∠A:∠B=1:2,
即5∠A=180°,
∴∠A=36°,
故答案为:36°
此题考查等腰三角形的性质,三角形内角和定理,解题关键在于得到5∠A=180°
21、
【解析】
先由平行四边形的性质求出OA+OB的值,再由的周长是厘米,求出AB的值,然后根据三角形的中位线即可求出EF的值.
【详解】
∵四边形ABCD是平行四边形,厘米,
∴OA+OB=12厘米,
∵的周长是厘米,
∴AB=20-12=8厘米,
∵点分别是线段的中点,
∴EF是的中位线,
∴EF=AB=4厘米.
故答案为:4.
本题考查了平行四边形的性质,三角形中位线的判定与性质. 三角形的中位线平行于第三边,并且等于第三边的一半.
22、22.5
【解析】
∵ABCD是正方形,
∴∠DBC=∠BCA=45°,
∵BP=BC,
∴∠BCP=∠BPC=(180°-45°)=67.5°,
∴∠ACP度数是67.5°-45°=22.5°
23、5;
【解析】
根据矩形性质得出AC=2AO,BD=2BO,AC=BD,推出AO=OB,得出等边三角形AOB,利用勾股定理即可得出答案.
【详解】
∵四边形ABCD是矩形,
∴AC=BD,AC=2AO,BD=2BO,∠ABC=90°,
∴AO=OB,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴AO=AB=5,
∴AC=2 AO=10,
在Rt△ABC中,由勾股定理得,
BC=.
故答案为:5.
本题考查了矩形的性质及勾股定理.根据矩形的性质及∠AOB=60°得出△AOB是等边三角形是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)DE=EF,见解析;(2)∠BAD=60°;(3)S四边形ABCD=6.
【解析】
(1)利用直角三角形斜边的中线性质和三角形的中位线性质可得结论;
(2)先证明∠CEF=∠BAD,∠DEC=∠BAD,根据∠DEF=90°列方程得∠BAD的度数;
(3)由四边形CDEF是菱形,说明△CDE是等边三角形,再根据等底同高说明△CDE与△DEA间关系,根据相似说明△CAB与△CEF间关系,由DE=2得AB=4,得等边△DEC的面积,利用三角形的面积间关系得结论.
【详解】
(1)DE=EF,
在△ABC中,点E,F分别为AC,BC的中点,
∴EF∥AB,且EF=AB,
在Rt△ACD中,点E为AC的中点,
∴DE=AC,
∵AB=AC,
∴DE=EF;
(2)∵AC平分∠BAD,EF∥AB,
DE=AC=AE=EC,
∴∠BAC=∠DAC,∠CEF=∠BAC,∠DEC=2∠DAC=∠BAD,
∵∠DEF=90°,
∴∠CEF+∠DEC=∠BAC+2∠DAC=90°,
∴∠BAC=∠DAC=30°,
∴∠BAD=60°;
(3)四边形ABCD的面积为:
∵四边形CDEF是菱形,EC=DE,
∴△CDE与△CEF都是等边三角形,
∵EF=DE=CD=CF=2,
∴AB=4,
∴S△DCE=S△DEA=S△CEF;
∵EF∥AB,
∴,
∴S△ABC=4S△CEF=4
∴S四边形ABCD=S△DCE+S△DEA+S△ABC=2×+4=6.
本题考查了四边形的综合问题,解题的关键是掌握三角形的中位线定理、直角三角形斜边的中线的性质、菱形的性质及等边三角形的面积等知识.题目难度中等,由题目原型到探究再到结论,步步深入,符合认知规律.
25、见解析.
【解析】
根据中位线定理和已知,易证明△NMP是等腰三角形,根据等腰三角形的性质即可得到结论.
【详解】
解:证明:∵是中点,是中点,
∴是的中位线,
∴,
∵是中点,是中点,
∴是的中位线,
∴,
∵,
∴,
∴是等腰三角形,
∴.
此题主要考查了三角形中位线定理,以及等腰三角形的判定与性质,熟练掌握等腰三角形的性质是解题的关键.
26、(1)见解析;(2)见解析.
【解析】
【分析】如果①②结合,那么这些线段所在的两个三角形是SSA,不一定全等,那么就不能得到相等的对边平行;如果②③结合,和①②结合的情况相同;如果①④结合,由对边平行可得到两对内错角相等,那么AD,BC所在的三角形全等,也得到平行的对边也相等,那么是平行四边形;最易举出反例的是②④,它有可能是等腰梯形.
【详解】(1)①④为条件时:
∵AD∥BC,
∴∠DAC=∠BCA,∠ADB=∠DBC,
又∵OA=OC,
∴△AOD≌△COB,
∴AD=BC,
∴四边形ABCD为平行四边形;
(2)②④为条件时,此时一组对边平行,另一组对边相等,可以构成等腰梯形.
【点睛】本题考查了平行四边形的判定,真命题与假命题,熟知举出符合条件不符合结论的例子来说明一个命题是假命题是关键;本题中用等腰梯形做反例来推翻不是平行四边形的论断.
题号
一
二
三
四
五
总分
得分
批阅人
销售方式
粗加工后销售
精加工后销售
每吨获利(元)
1000
2000
2025届重庆清化中学九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份2025届重庆清化中学九年级数学第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江西南昌市心远中学度数学九年级第一学期开学教学质量检测试题【含答案】: 这是一份2024年江西南昌市心远中学度数学九年级第一学期开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖南省长沙市岳麓区长郡梅溪湖中学九年级数学第一学期开学检测模拟试题【含答案】: 这是一份2024年湖南省长沙市岳麓区长郡梅溪湖中学九年级数学第一学期开学检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。