|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年江西南昌市心远中学度数学九年级第一学期开学教学质量检测试题【含答案】
    立即下载
    加入资料篮
    2024年江西南昌市心远中学度数学九年级第一学期开学教学质量检测试题【含答案】01
    2024年江西南昌市心远中学度数学九年级第一学期开学教学质量检测试题【含答案】02
    2024年江西南昌市心远中学度数学九年级第一学期开学教学质量检测试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年江西南昌市心远中学度数学九年级第一学期开学教学质量检测试题【含答案】

    展开
    这是一份2024年江西南昌市心远中学度数学九年级第一学期开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为( )
    A.24mB.22mC.20mD.18m
    2、(4分)实数 x 取任何值,下列代数式都有意义的是( )
    A.B.C.D.
    3、(4分)三角形的三边长为,则这个三角形是( )
    A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形
    4、(4分)如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为( )
    A.y=-x+2B.y=x+2C.y=x-2D.y=-x-2
    5、(4分)某铁工艺品商城某天销售了110件工艺品,其统计如表:
    该店长如果想要了解哪个货种的销售量最大,那么他应该关注的统计量是( )
    A.平均数B.众数C.中位数D.方差
    6、(4分)一次函数满足,且随的增大而减小,则此函数的图象不经过( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    7、(4分)如图,正方形ABCD的边长为3,E在BC上,且BE=2,P在BD上,则PE+PC的最小值为( )
    A.B.C.D.
    8、(4分)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD的值最小时,点P的坐标为( )
    A.(﹣1,0)B.(﹣2,0)C.(﹣3,0)D.(﹣4,0)
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一元二次方程有实数根,则的取值范围为____.
    10、(4分)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M是BC边上一个动点,联结AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转恰好至△NGF.给出以下三个结论:①∠AND=∠MPC; ②△ABM≌△NGF;③S四边形AMFN=a1+b1.其中正确的结论是_____(请填写序号).
    11、(4分)已知关于的方程的一个解为1,则它的另一个解是__________.
    12、(4分)当___________________时,关于的分式方程无解
    13、(4分)如图,已知矩形ABCD,AB在y轴上,AB=2,BC=3,点A的坐标为(0,1),在AD边上有一点E(2,1),过点E的直线与BC交于点F.若EF平分矩形ABCD的面积,则直线EF的解析式为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,□ABCD的对角线AC、BD相交于点O,AC平分∠BAD,DP//AC,CP//BD.
    (1)求证:四边形ABCD是菱形;
    (2)若AC=4,BD=6,求OP的长.
    15、(8分)甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:
    根据以上信息,请解答下面的问题;
    (1)补全甲选手10次成绩频数分布图.
    (2)a= ,b= ,c= .
    (3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).
    16、(8分)用适当的方法解方程
    (1)x2﹣4x+3=1;
    (2)(x+1)2﹣3(x+1)=1.
    17、(10分)如图,在△ABC中,点D为边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE点F在AB上,且BF=DE
    (1)求证:四边形BDEF是平行四边形
    (2)线段AB,BF,AC之间具有怎样的数量关系?证明你所得到的结论
    18、(10分)如图1,在平面直角坐标系中直线与x轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转得到CD,此时点D恰好落在直线AB上时,过点D作轴于点E.
    求证:≌;
    如图2,将沿x轴正方向平移得,当直线经过点D时,求点D的坐标及平移的距离;
    若点P在y轴上,点Q在直线AB上是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐;若不存在,请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)设甲组数:1,1,2,5的方差为S甲2,乙组数是:6,6,6,6的方差为S乙2,则S甲2与S乙2的大小关系是S甲2_____S乙2(选择“>”、“<”或“=”填空).
    20、(4分)计算:____ .
    21、(4分)如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,连结AC、BD,回答问题
    (1)对角线AC、BD满足条件_____时,四边形EFGH是矩形.
    (2)对角线AC、BD满足条件_____时,四边形EFGH是菱形.
    (3)对角线AC、BD满足条件_____时,四边形EFGH是正方形.
    22、(4分)计算:的结果是_____.
    23、(4分)______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)计算:
    (1)-|5-|+; (2)-(2+)2
    25、(10分)计算:,
    26、(12分)如图,已知四边形ABCD是平行四边形,小慧同学利用直尺和规进行了如下操作:①连接AC,分别以点A、C为圆心,以大于AC的长为半径画弧,两弧相交于点P、Q;②作直线PQ,分别交BC、AC、AD于点E、O、F,连接AE、CF.根据操作结果,解答下列问题:
    (1)线段AF与CF的数量关系是 .
    (2)若∠BAD=120°,AE平分∠BAD,AB=8,求四边形AECF的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    过点D构造矩形,把塔高的影长分解为平地上的BD,斜坡上的DE.然后根据影长的比分别求得AG,GB长,把它们相加即可.
    【详解】
    解:过D作DF⊥CD,交AE于点F,过F作FG⊥AB,垂足为G.
    由题意得:.
    ∴DF=DE×1.6÷2=14.4(m).
    ∴GF=BD=CD=6m.
    又∵.
    ∴AG=1.6×6=9.6(m).
    ∴AB=14.4+9.6=24(m).
    答:铁塔的高度为24m.
    故选A.
    2、C
    【解析】
    根据二次根式有意义,被开方数大于等于0对各选项举例判断即可.
    【详解】
    解:A、由6+2x≥0得,x≥-3,
    所以,x<-3时二次根式无意义,故本选项错误;
    B、由2-x≥0得,x≤2,
    所以,x>2时二次根式无意义,故本选项错误;
    C、∵(x-1)2≥0,
    ∴实数x取任何值二次根式都有意义,故本选项正确;
    D、由x+1≥0得,x≥-1,
    所以,x<-1二次根式无意义,
    又x=0时分母等于0,无意义,故本选项错误;
    故选:C.
    本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.
    3、C
    【解析】
    利用完全平方公式把等式变形为a2+b2=c2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案.
    【详解】
    ∵,
    ∴a2+2ab+b2=c2+2ab,
    ∴a2+b2=c2,
    ∴这个三角形是直角三角形,
    故选:C.
    本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.
    4、B
    【解析】
    解:设一次函数的解析式y=kx+b(k≠0),
    ∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,
    ∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).
    把A(0,1),B(-1,1)的坐标代入一次函数的解析式y=kx+b
    得:,解得,
    该一次函数的表达式为y=x+1.
    故选B.
    5、B
    【解析】
    根据众数的概念:数据中出现次数最多的数,即可得出他应该关注的统计量.
    【详解】
    由于众数是数据中出现次数最多的数,所以想要了解哪个货种的销售量最大,应该关注的统计量是这组数据中的众数.
    故选:B.
    本题主要考查统计的相关知识,掌握平均数,众数,中位数,方差的意义是解题的关键.
    6、A
    【解析】
    根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.
    故选A.
    考点是一次函数图象与系数的关系.
    7、B
    【解析】
    要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.
    【详解】
    如图,连接AE,
    因为点C关于BD的对称点为点A,
    所以PE+PC=PE+AP,
    根据两点之间线段最短可得AE就是AP+PE的最小值,
    ∵正方形ABCD的边长为3,BE=2,
    ∴AE==,
    ∴PE+PC的最小值是.
    故选:B.
    此题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.
    8、B
    【解析】
    根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.
    【详解】
    作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图.
    令y=x+4中x=0,则y=4,
    ∴点B的坐标为(0,4);
    令y=x+4中y=0,则x+4=0,解得:x=﹣8,
    ∴点A的坐标为(﹣8,0).
    ∵点C、D分别为线段AB、OB的中点,
    ∴点C(﹣4,1),点D(0,1).
    ∵点D′和点D关于x轴对称,
    ∴点D′的坐标为(0,﹣1).
    设直线CD′的解析式为y=kx+b,
    ∵直线CD′过点C(﹣4,1),D′(0,﹣1),
    ∴,解得:,
    ∴直线CD′的解析式为y=﹣x﹣1.
    令y=0,则0=﹣x﹣1,解得:x=﹣1,
    ∴点P的坐标为(﹣1,0).
    故选:B.
    本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是求出直线CD′的解析式.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标利用待定系数法求出函数解析式是关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据根的判别式求解即可.
    【详解】
    ∵一元二次方程有实数根

    解得
    故答案为:.
    本题考查了一元二次方程根的问题,掌握根的判别式是解题的关键.
    10、①②③.
    【解析】
    ①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∴∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,可知∠DAM=∠AND,②根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM≌△NGF;③由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是正方形,于是得到S四边形AMFN=AM1=a1+b1;
    【详解】
    ①∵四边形ABCD是正方形,
    ∴∠BAD=∠ADC=∠B=90°,
    ∴∠BAM+∠DAM=90°,
    ∵将△ABM绕点A旋转至△ADN,
    ∴∠NAD=∠BAM,∠AND=∠AMB,
    ∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,
    ∴∠DAM=∠AND,故①正确,
    ②∵将△MEF绕点F旋转至△NGF,
    ∴GN=ME,
    ∵AB=a,ME=a,
    ∴AB=ME=NG,
    在△ABM与△NGF中,AB=NG=a,∠B=∠NGF=90°,GF=BM=b,
    ∴△ABM≌△NGF;故②正确;
    ③∵将△ABM绕点A旋转至△ADN,
    ∴AM=AN,
    ∵将△MEF绕点F旋转至△NGF,
    ∴NF=MF,
    ∵△ABM≌△NGF,
    ∴AM=NF,
    ∴四边形AMFN是矩形,
    ∵∠BAM=∠NAD,
    ∴∠BAM+DAM=∠NAD+∠DAN=90°,
    ∴∠NAM=90°,
    ∴四边形AMFN是正方形,
    ∵在Rt△ABM中,a1+b1=AM1,
    ∴S四边形AMFN=AM1=a1+b1;故③正确
    故答案为①②③.
    本题考查了全等三角形的判定和性质,正方形的性质,旋转的性质,正确的理解题意是解题的关键.
    11、
    【解析】
    根据一元二次方程解的定义,将x=1代入原方程列出关于k的方程,通过解方程求得k值;最后根据根与系数的关系求得方程的另一根.
    【详解】
    解:将x=1代入关于x的方程x2+kx−1=0,
    得:1+k−1=0
    解得:k=2,
    设方程的另一个根为a,
    则1+a=−2,
    解得:a=−1,
    故方程的另一个根为−1.
    故答案是:−1.
    本题考查的是一元二次方程的解集根与系数的关系.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
    12、m=1、m=-4或m=6.
    【解析】
    方程两边都乘以(x+2)(x-2)把分式方程化为整式方程,当分式方程有增根或分式方程化成的整式方程无解时原分式方程无解,根据这两种情形即可计算出m的值.
    【详解】
    解:方程两边都乘以(x+2)(x-2)去分母得,
    2(x+2)+mx=3(x-2),
    整理得(1-m)x=10,
    ∴当m=1时,此整式方程无解,所以原分式方程也无解.
    又当原分式方程有增根时,分式方程也无解,
    ∴当x=2或-2时原分式方程无解,
    ∴2(1-m)=10或-2(1-m)=10,
    解得:m=-4或m=6,
    ∴当m=1、m=-4或m=6时,关于x的方程无解.
    本题考查了分式方程的无解条件.分式方程无解有两种情形:一是分式方程有增根;二是分式方程化成的整式方程无解.
    13、y=2x-3.
    【解析】
    根据题意可得点B的坐标为(0,-1),AE=2,根据EF平分矩形ABCD的面积,先求出点F的坐标,再利用待定系数法求函数解析式即可.
    【详解】
    ∵AB=2,点A的坐标为(0,1),
    ∴OB=1,∴点B坐标为(0,-1),
    ∵点E(2,1),
    ∴AE=2,ED=AD-AE=1,
    ∵EF平分矩形ABCD的面积,
    ∴BF=DE,
    ∴点F的坐标为(1,-1),
    设直线EF的解析式为y=kx+b,将点E和点F的坐标代入可得,

    解得k=2,b=-3
    ∴EF的解析式为y=2x-3.
    故答案为:y=2x-3.
    本题考查了矩形的性质和待定系数法求一次函数解析式,正确求得点F的坐标为(1,-1)是解决问题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)
    【解析】
    (1)首先通过角平分线的定义和平行四边形的性质,平行线的性质得出,则有,再利用一组邻边相等的平行四边形是菱形即可证明;
    (2)首先根据题意和菱形的性质证明四边形OCPD是矩形,然后利用矩形的性质和勾股定理即可得出答案.
    【详解】
    (1)∵AC平分∠BAD,

    ∵四边形ABCD是平行四边形,




    ∴平行四边形ABCD是菱形;
    (2)∵平行四边形ABCD是菱形,
    ∴,

    ∵DPAC,CPBD,
    ∴四边形OCPD是平行四边形.

    ∴四边形OCPD是矩形,
    ∴ .
    本题主要考查四边形,掌握矩形,菱形的判定及性质和勾股定理是解题的关键.
    15、(1)4;(2)8、1.2、7.5;(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.
    【解析】
    (1)根据甲的成绩频数分布图及题意列出10﹣(1+2+2+1),计算即可得到答案;
    (2)根据平均数公式、中位数的求法和方差公式计算得到答案;
    (3)从平均数和方差进行分析即可得到答案.
    【详解】
    解:(1)甲选手命中8环的次数为10﹣(1+2+2+1)=4,
    补全图形如下:
    (2)a==8(环),
    c=×[(6﹣8)2+2×(7﹣8)2+4×(8﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2,
    b==7.5,
    故答案为:8、1.2、7.5;
    (3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.
    本题考查频数分布直方图、平均数、中位数和方差,解题的关键是读懂频数分布直方图,掌握平均数、中位数和方差的求法.
    16、(1)x1=1,x2=3;(2)x1=﹣1,x2=2.
    【解析】
    (1)直接利用十字相乘法解方程进而得出答案;
    (2)直接提取公因式进而分解因式解方程即可.
    【详解】
    解:(1)

    解得:,;
    (2)

    解得:,.
    此题主要考查了因式分解法解方程,正确分解因式是解题关键.
    17、(1)见解析;(2),理由见解析
    【解析】
    (1)延长CE交AB于点G,证明,得E为中点,通过中位线证明DEAB,结合BF=DE,证明BDEF是平行四边形
    (2)通过BDEF为平行四边形,证得BF=DE=BG,再根据,得AC=AG,用AB-AG=BG,可证
    【详解】
    (1)证明:延长CE交AB于点G
    ∵AECE

    在和

    ∴GE=EC
    ∵BD=CD
    ∴DE为的中位线
    ∴DEAB
    ∵DE=BF
    ∴四边形BDEF是平行四边形
    (2)
    理由如下:
    ∵四边形BDEF是平行四边形
    ∴BF=DE
    ∵D,E分别是BC,GC的中点
    ∴BF=DE=BG

    ∴AG=AC
    BF=(AB-AG)=(AB-AC).
    本题主要考查了平行四边形的证明,中位线的性质,全等三角形的证明等综合性内容,作好适当的辅助线,是解题的关键.
    18、(1)证明见解析;(2)平移的距离是个单位.(3)点Q的坐标为或或
    【解析】
    根据AAS或ASA即可证明;
    首先求出点D的坐标,再求出直线的解析式,求出点的坐标即可解决问题;
    如图3中,作交y轴于P,作交AB于Q,则四边形PCDQ是平行四边形,求出直线PC的解析式,可得点P坐标,点C向左平移1个单位,向上平移个单位得到P,推出点D向左平移1个单位,向上平移个单位得到Q,再根据对称性可得、的坐标;
    【详解】
    证明:,
    ,,


    ≌.
    ≌,
    ,,

    把代入得到,,



    ,,
    直线BC的解析式为,
    设直线的解析式为,把代入得到,
    直线的解析式为,


    平移的距离是个单位.
    解:如图3中,作交y轴于P,作交AB于Q,则四边形PCDQ是平行四边形,
    易知直线PC的解析式为,

    点C向左平移1个单位,向上平移个单位得到P,
    点D向左平移1个单位,向上平移个单位得到Q,

    当CD为对角线时,四边形是平行四边形,可得,
    当四边形为平行四边形时,可得,
    综上所述,满足条件的点Q的坐标为或或
    本题考查一次函数综合题、平行四边形的判定和性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用待定系数法解决问题,学会用分类讨论的思想思考问题,学会用平移、对称等性质解决问题,属于中考压轴题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、>
    【解析】
    根据方差的意义进行判断.
    【详解】
    因为甲组数有波动,而乙组的数据都相等,没有波动,
    所以s甲1>s乙1.
    故答案为:>.
    本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    20、1
    【解析】
    先算括号内,再算除法即可.
    【详解】
    原式=.
    故答案为:1.
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    21、AC⊥BD AC=BD AC⊥BD且AC=BD
    【解析】
    先证明四边形EFGH是平行四边形,
    (1)在已证平行四边形的基础上,要使所得四边形是矩形,则需要一个角是直角,故对角线应满足互相垂直
    (2)在已证平行四边形的基础上,要使所得四边形是菱形,则需要一组邻边相等,故对角线应满足相等
    (3)联立(1)(2),要使所得四边形是正方形,则需要对角线垂直且相等
    【详解】
    解:连接AC、BD.
    ∵E、F、G、H分别是AB、BC、CD、DA边上的中点,
    ∴EF∥AC,EF=AC,FG∥BD,FG=BD,GH∥AC,GH=AC,EH∥BD,EH=BD.
    ∴EF∥HG,EF=GH,FG∥EH,FG=EH.
    ∴四边形EFGH是平行四边形;
    (1)要使四边形EFGH是矩形,则需EF⊥FG,
    由(1)得,只需AC⊥BD;
    (2)要使四边形EFGH是菱形,则需EF=FG,
    由(1)得,只需AC=BD;
    (3)要使四边形EFGH是正方形,综合(1)和(2),
    则需AC⊥BD且AC=BD.
    故答案是:AC⊥BD;AC=BD;AC⊥BD且AC=BD
    此题主要考查平行四边形,矩形,菱形以及正方形的判定条件
    22、
    【解析】
    逆用积的乘方运算法则以及平方差公式即可求得答案.
    【详解】
    =
    =
    =(5-4)2018×
    =+2,
    故答案为+2.
    本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.
    23、
    【解析】
    先逐项化简,再进一步计算即可.
    【详解】
    原式=-1-3+1= .
    故答案为:.
    本题考查了实数的混合运算,正确化简各数是解答本题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)13+4;(2)-1.
    【解析】
    (1)先把二次根式化简,然后去绝对值后合并即可;
    (2)利用分母有理化和完全平方公式计算.
    【详解】
    解:(1)原式=3-(5-)+18
    =3-5++18
    =13+4;
    (2)原式=4-(4+4+3)
    =4-1-4
    =-1.
    故答案为:(1)13+4;(2)-1.
    本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    25、5-2
    【解析】
    先根据绝对值、整数指数幂和二次根式的性质化简各数,然后进行加减即可得出答案。
    【详解】
    解:原式=2-1×1-2+4
    =5-2
    本题考查了实数的混合运算,熟练掌握运算法则是关键。
    26、(1)FA=FC;(2)
    【解析】
    (1)根据基本作图和线段垂直平分线的性质进行判断;
    (2))由AE平分∠BAD得到∠BAE=∠DAE=∠BAD=60°,利用平行四边形的性质得AD∥BC,则∠AEB=∠DAE=60°,所以△ABE为等边三角形,则AE=AB=8,∠B=60°,于是可计算出AC=AB=8,再证明△AEF为等边三角形得到EF=8,然后根据三角形面积公式利用四边形AECF的面积=EF×AC进行计算.
    【详解】
    解:(1)由作法得EF垂直平分AC,
    所以FA=FC.
    故答案为FA=FC;
    (2)∵AE平分∠BAD,
    ∴∠BAE=∠DAE=∠BAD=60°,
    ∵四边形ABCD为平行四边形,
    ∴AD∥BC,
    ∴∠AEB=∠DAE=60°,
    ∴△ABE为等边三角形,
    ∴AE=AB=8,∠B=60°,
    ∵EA=EC,
    ∴∠EAC=∠ECA=∠AEB=30°,
    ∴AC=AB=8,
    ∵∠CAD=60°-30°=30°,
    即OA平分∠EAF,
    ∴AF=AE=8,
    ∴△AEF为等边三角形,
    ∴EF=8,
    ∴四边形AECF的面积=.
    本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.
    题号





    总分
    得分
    货种
    A
    B
    C
    D
    E
    销售量(件)
    10
    40
    30
    10
    20
    选手
    A平均数
    中位数
    众数
    方差

    a
    8
    8
    c

    7.5
    b
    6和9
    2.65
    相关试卷

    江西省南昌市心远中学2023-2024学年数学九上期末教学质量检测模拟试题含答案: 这是一份江西省南昌市心远中学2023-2024学年数学九上期末教学质量检测模拟试题含答案,共7页。

    江西南昌市心远中学度2023-2024学年九年级数学第一学期期末综合测试试题含答案: 这是一份江西南昌市心远中学度2023-2024学年九年级数学第一学期期末综合测试试题含答案,共7页。

    江西南昌市心远中学度2023-2024学年八上数学期末考试模拟试题含答案: 这是一份江西南昌市心远中学度2023-2024学年八上数学期末考试模拟试题含答案,共8页。试卷主要包含了下面的计算中,正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map