江西省南昌市第二中学2025届九年级数学第一学期开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)将点向左平移个单位长度,在向上平移个单位长度得到点,则点的坐标是( )
A.B.C.D.
2、(4分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是( )
A.0B.1C.2D.3
3、(4分)若一个正方形的面积为(ɑ+1)(ɑ+2)+,则该正方形的边长为( )
A.B.C.D.
4、(4分)不等式x≤-1的解集在数轴上表示正确的是()
A.B.
C.D.
5、(4分)若在反比例函数的图像上,则下列结论正确的是( )
A.B.
C.D.
6、(4分)下列运算错误的是( )
A.B.C.D.
7、(4分)下列各组数据中的三个数,可作为三边长构成直角三角形的是( )
A.1、2、3 B. C. D.
8、(4分)在以x为自变量, y为函数的关系式y=5πx中,常量为( )
A.5B.πC.5πD.πx
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)将一次函数y=2x﹣3的图象沿y轴向上平移3个单位长度,所得直线的解析式为_____.
10、(4分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是_____
11、(4分)若,则的取值范围是_________.
12、(4分)已知反比例函数 y=的图像都过A(1,3)则m=______.
13、(4分)如图,以Rt△ABC的斜边BC为边在三角形ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=4,AO=6,则△ABC的面积为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)光明玩具商店用800元购进若干套悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用1500元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.
(1)求第一批悠悠球每套的进价是多少元?
(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于20%,那么每套悠悠球的售价至少是多少元?
15、(8分)如果一组数据﹣1,0,2,3,x的极差为6
(1)求x的值;
(2)求这组数据的平均数.
16、(8分)如图,在正方形ABCD中,AB=6,点E在边CD上,且CE=2DE,将△ADE沿AE对折得到△AFE,延长EF交边BC于点G,连结AG、CF.
(1)求证:△ABG≌△AFG;
(2)判断BG与CG的数量关系,并证明你的结论;
(3)作FH⊥CG于点H,求GH的长.
17、(10分)先化简再求值:,再从0,﹣1,2中选一个数作为a的值代入求值.
18、(10分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形.
(1)使三角形三边长为3,,;
(2)使平行四边形有一锐角为15°,且面积为1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若不等式组有且仅有3个整数解,则的取值范围是___________.
20、(4分)如图,在平行四边形纸片ABCD中,AB=3,将纸片沿对角线AC对折,BC边与AD边交于点E,此时,△CDE恰为等边三角形,则图中重叠部分的面积为_____.
21、(4分)已知直线y=﹣与x轴、y轴分别交于点A、B,在坐标轴上找点P,使△ABP为等腰三角形,则点P的个数为_____个.
22、(4分)在菱形ABCD中,E为AB的中点,OE=3,则菱形ABCD的周长为.
23、(4分)已知:a、b、c是△ABC的三边长,且满足|a﹣3|++(c﹣5)2=0,则该三角形的面积是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:
(1)画出关于原点的中心对称图形;
(2)画出将绕点顺时针方向旋转90°得到的.
(3)设为边上一点,在上与点对应的点是.则点坐标为__________.
25、(10分)已知:如图,▱ABCD的对角线AC与BD相交于点O,过点O的直线与AD,BC分别相交于点E,F.
(1)求证:OE=OF;
(2)连接BE,DF,求证:BE=DF.
26、(12分)网格是由边长为1的小正方形组成,点A,B,C位置如图所示,若点,.
(1)建立适当的平面直角坐标系,并写出点C坐标(______,______);点B到x轴的距离是______,点C到y轴的距离是______;
(2)在平面直角坐标系中找一点D,使A,B,C,D为顶点的四边形的所有内角都相等,再画出四边形ABCD.
(3)请你说出线段AB经过怎样的变换得到线段DC的?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据:横坐标,右移加,左移减;纵坐标,上移加,下移减的规律即可解决问题.
【详解】
将点A(2,−1)向左平移3个单位长度,再向上平移4个单位长度得到点B(−1,3),
故选:D.
本题考查坐标平移,记住坐标平移的规律是解决问题的关键.
2、B
【解析】
根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.
【详解】
解:∵y1=kx+b的函数值随x的增大而减小,
∴k<0;故①正确
∵y2=x+a的图象与y轴交于负半轴,
∴a<0;
当x<3时,相应的x的值,y1图象均高于y2的图象,
∴y1>y2,故②③错误.
故选:B.
本题考查了两条直线相交问题,难点在于根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.
3、B
【解析】
把所给代数式重新整理后用完全平方公式分解因式即可.
【详解】
(ɑ+1)(ɑ+2)+==,
∴正方形的边长为:.
故选B.
本题考查了完全平方公式进行因式分解,熟练掌握a2±2ab+b2=(a±b)2是解答本题的关键.两项平方项的符号需相同;有一项是两底数积的2倍,是易错点.
4、B
【解析】
根据数轴的表示方法表示即可.(注意等于的时候是实心的原点.)
【详解】
根据题意不等式x≤-1的解集是在-1的左边部分,包括-1.
故选B.
本题主要考查实数的数轴表示,注意有等号时应用实心原点表示.
5、D
【解析】
将点A(a,b)代入反比例函数的解析式,即可求解.
【详解】
解:∵A(a,b)在反比例函数的图象上,
∴,即ab=-2<1,
∴a与b异号,
∴<1.
故选D.
本题考查了反比例函数图象上点的坐标特征,函数图象上的点,一定满足函数的解析式.
6、C
【解析】
根据二次根的运算法则对选项进行判断即可
【详解】
A. ,所以本选项正确
B. ,所以本选项正确
C. ,不是同类二次根式,不能合并,故本选项错误
D. ,所以本选项正确
故选C.
本题考查二次根,熟练掌握二次根式的性质和运算法则是解题关键
7、C
【解析】试题解析:A、∵12+22=5≠32,
∴以这三个数为长度的线段不能构成直角三角形,故选项错误;
B、∵(32)2+(42)2≠(52)2 ,
∴以这三个数为长度的线段不能构成直角三角形,故选项错误;
C、∵()2+()2=3=()2,
∴以这三个数为长度的线段,能构成直角三角形,故选项正确;
D、∵()2+()2=7≠()2,
∴以这三个数为长度的线段不能构成直角三角形,故选项错误.
故选C.
【点睛】本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.
8、C
【解析】
根据常量的定义解答即可,常量是指在某一个变化过程中,固定不变的量.
【详解】
在以x为自变量, y为函数的关系式y=5πx中,常量为5π,
故选:C.
考查了变量关系中的常量的定义,熟记常量定义是解题的关键,注意π是常量.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=2x
【解析】
根据上加下减,左加右减的法则可得出答案
【详解】
一次函数y=2x﹣3的图象沿y轴向上平移3个单位长度变为:
y=2x﹣3+3=2x
此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
10、4
【解析】
根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得出四边形DBEC是菱形,由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.
【详解】
∵CE∥DB,BE∥DC,
∴四边形DBEC为平行四边形.
又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,
∴CD=BD=AC,
∴平行四边形DBEC是菱形;
∵点D,F分别是AC,AB的中点,AD=3,DF=1,
∴DF是△ABC的中位线,AC=1AD=6,S△BCD=S△ABC,
∴BC=1DF=1.
又∵∠ABC=90°,
∴AB==.
∵平行四边形DBEC是菱形,
∴S四边形DBEC=1S△BCD=S△ABC=AB•BC=×4×1=4,
故答案为4.
考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题.
11、a≤3
【解析】
根据算术平方根的非负性,可以得到3-a≥0,即可求得a得取值范围.
【详解】
解:由表示算术平方根具有非负性,则3-a≥0,即a≤3.
本题考查算平方根的性质,正确、灵活运用算术平方根的非负性是解答本题的关键.
12、1.
【解析】
把点A(1,1)代入函解析式即可求出m的值.
【详解】
解:把点A(1,1)代入函解析式得1=,解得m=1.
故答案为:1.
本题考查反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解题的关键.
13、32
【解析】
在上截取,连接,根据、、、四点共圆,推出,证,推出,,得出等腰直角三角形,根据勾股定理求出,即可求出.由三角形面积公式即可求出Rt△ABC的面积.
【详解】
解:在上截取,连接,
四边形是正方形,,
,,
、、、四点共圆,
,
在和中
,
,
,,
,
,
即是等腰直角三角形,
由勾股定理得:,
即.
∴= 4
故答案为:32
本题主要考查对勾股定理,正方形的性质,直角三角形的性质,全等三角形的性质和判定等知识点的理解和掌握,利用旋转模型构造三角形全等和等腰直角三角形是解此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)20;(2)27.1.
【解析】
(1)设第一批悠悠球每套的进价是x元,则第二批的进价是每套(x+5)元,根据两次购买的数量关系建立方程求出其解即可;
(2)设每套的售价为m元,先由(1)求出两次购买的数量,再根据利润之间的关系建立不等式求出其解即可.
【详解】
解:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是元.
∴
经检验,是原方程的根
答:第一批悠悠球每套的进价是20元
(2)设每套悠悠球的售价是m元.
∵,∴
∴
∴m的最小值是27.1.
答:每套悠悠球的售价至少为27.1元
本题考查了列分式方程解实际问题的运用,列一元一次不等式解实际问题的运用,解答时找到题意中的等量关系及不相等关系建立方程及不等式是解答的关键.
15、(1)x=1或x=-3;(2)或
【解析】
(1)根据极差的定义求解.分两种情况:x为最大值或最小值.(2)根据平均数的公式求解即可。
【详解】
解:(1)∵3+1=4<6,∴x为最大值或最小值.
当x为最大值时,有x+1=6,解得x=1.
当x为最小值时,3﹣x=6,解得x=﹣3;
(2)当x为1时,平均数为 .
当x为﹣3时,平均数为 .
本题考查了极差的定义和算术平均数,正确理解极差的定义,能够注意到应该分两种情况讨论是解决本题的关键.
16、(1)见解析;(2)BG=CG;(3)GH=.
【解析】
(1)先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG;
(2)由全等性质得GB=GF、∠BAG=∠FAG,从而知∠GAE=∠BAD=45°、GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解之可得BG=CG=3;
(3)由(2)中结果得出GF=3、GE=5,证△FHG∽△ECG得=,代入计算可得.
【详解】
(1)∵正方形ABCD的边长为6,CE=2DE,
∴DE=2,EC=4,
∵把△ADE沿AE折叠使△ADE落在△AFE的位置,
∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,
在Rt△ABG和Rt△AFG中
∵ ,
∴Rt△ABG≌Rt△AFG(HL);
(2)∵Rt△ABG≌Rt△AFG,
∴GB=GF,∠BAG=∠FAG,
∴∠GAE=∠FAE+∠FAG=∠BAD=45°,
设BG=x,则GF=x,CG=BC﹣BG=6﹣x,
在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,
∵CG2+CE2=GE2,
∴(6﹣x)2+42=(x+2)2,解得x=3,
∴BG=3,CG=6﹣3=3
∴BG=CG;
(3)由(2)知BG=FG=CG=3,
∵CE=4,
∴GE=5,
∵FH⊥CG,
∴∠FHG=∠ECG=90°,
∴FH∥EC,
∴△FHG∽△ECG,
则=,即=,
解得GH=.
本题考查了四边形的综合问题,解题的关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形全等的判定与性质、勾股定理和正方形的性质.
17、.
【解析】
首先将分式进行化简,特别注意代入计算的数,不能使分式的分母为0.
【详解】
解:原式=
=
= ,
∵a≠0,a2﹣1≠0,a2+a≠0,
即a≠0,且a≠±1,
∴取a=2,
原式=.
本题主要考查分式化简求值,注意分式的分母不能为0
18、(1)详见解析;(2)详见解析
【解析】
(1)本题中实际上是长为2宽为2的正方形的对角线长,实际上是长为2宽为1的矩形的对角线的长,据此可找出所求的三角形;
(2)可先找出一个直角边为2的等腰直角三角形,然后据此画出平行四边形.
【详解】
(1)△ABC为所求;
(2)四边形ABCD为所求.
关键是确定三角形的边长,然后根据边长画出所求的三角形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1≤a<2
【解析】
此题需要首先解不等式,根据解的情况确定a的取值范围.特别是要注意不等号中等号的取舍.
【详解】
解:解不等式x+a≥0得:x≥-a,
解不等式1-1x>x-1得:x<1,
∵此不等式组有2个整数解,
∴这2个整数解为-1,-1,0,
∴a的取值范围是-2<a≤-1.
故答案为:1≤a<2.
此题考查一元一次不等式组的解法.解题关键在于要注意分析不等式组的解集的确定.
20、.
【解析】
根据翻折的性质,及已知的角度,可得△AEB’为等边三角形,再由四边形ABCD为平行四边形,且∠B=60°,从而知道B’,A,B三点在同一条直线上,再由AC是对称轴,所以AC垂直且平分BB’,AB=AB’=AE=3,求AE边上的高,从而得到面积.
【详解】
解:∵△CDE恰为等边三角形,
∴∠AEB’=∠DEC=60°,∠D=∠B=∠B’=60°,
∴△AEB’为等边三角形,
由四边形ABCD为平行四边形,且∠B=60°,
∴∠BAD=120°,所以所以∠B’AE+∠DAB=180°,
∴B’,A,B三点在同一条直线上,
∴AC是对折线,
∴AC垂直且平分BB’,
∴AB=AB’=AE=3,AE边上的高,h=CD×sin60°=,
∴面积为.
本题有一个难点,题目并没有说明B’,A,B三点在同一条直线上,虽然图形是一条直线,易当作已知条件,这一点需注意.
21、1
【解析】
根据题意可以画出相应的图形,然后写出各种情况下的等腰三角形,即可解答本题.
【详解】
如图所示,
当BA=BP1时,△ABP1是等腰三角形,
当BA=BP2时,△ABP2是等腰三角形,
当AB=AP3时,△ABP3是等腰三角形,
当AB=AP4时,△ABP4是等腰三角形,
当BA=BP5时,△ABP5是等腰三角形,
当P1A=P1B时,△ABP1是等腰三角形,
故答案为1.
本题考查一次函数图象上点的坐标特征、等腰三角形的判定,解答本题的关键是明确题意,画出相应的图形,利用数形结合的思想解答,注意一定要考虑全面.
22、1.
【解析】
试题分析:根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线等于第三边的一半求出AD,然后根据菱形的周长进行计算即可得解.
解:在菱形ABCD中,OB=OD,
∵E为AB的中点,
∴OE是△ABD的中位线,
∵OE=3,
∴AD=2OE=2×3=6,
∴菱形ABCD的周长为4×6=1.
故答案为1.
考点:菱形的性质.
23、1
【解析】
根据绝对值,二次根式,平方的非负性求出a,b,c的值,再根据勾股定理逆定理得到三角形为直角三角形,故可求解.
【详解】
解:由题意知a﹣3=0,b﹣4=0,c﹣5=0,
∴a=3,b=4,c=5,
∴a2+b2=c2,
∴三角形的形状是直角三角形,
则该三角形的面积是3×4÷2=1.
故答案为:1.
此题主要考查勾股定理的应用,解题的关键是熟知实数的性质.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析;(3)(b,-a).
【解析】
(1)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点,顺次连接即可;
(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2;
(3)利用A与A2、B与B2、C与C2的坐标特征确定对应点的坐标变换规律,从而写出点P1坐标.
【详解】
解:(1)如图,△A1B1C1即为所作;
(2)如图,△A2B2C2即为所作;
(3)点P1坐标为(b,-a).
故答案为:(b,-a).
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
25、(1)见解析;(2)见解析.
【解析】
由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,又由OE⊥AD,OF⊥BC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF;
由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OB=OD,
又由OE=OF,可证得四边形DEBF是平行四边形,由平行四边形的性质可得BE=DF.
【详解】
证明:∵四边形ABCD是平行四边形,
∴OA=OC,AD∥BC,
∴∠OAF=∠OCE,
在△OAF和△OCE中,
,
∴△AOF≌△COE(ASA),
∴OE=OF;
(2)证明:∵四边形ABCD是平行四边形,
∴OB=OD,∵OE=OF,
∴四边形DEBF是平行四边形,
∴BE=DF.
本题考查的知识点是平行四边形的性质,解题关键是熟记平行四边形性质.
26、(1)平面直角坐标系如图所示,(3,1),3,3; (2)如图所示;见解析; (3)线段AB向右平移4个单位,再向下平移2个单位得到线段DC.(答案不唯一)
【解析】
(1)根据坐标与图形性质,由A,B即可推出C的坐标,即可解答
(2)根据矩形的性质,画出图形即可解答
(3)利用平移的性质,即可解答
【详解】
(1)平面直角坐标系如图所示,(3,1),3,3;
(2)如图所示;
(3)线段AB向右平移4个单位,再向下平移2个单位得到线段DC.(答案不唯一)
此题考查作图-基本作图,平移的性质,解题关键在于掌握作图法则
题号
一
二
三
四
五
总分
得分
江西省南昌市心远中学2024-2025学年九上数学开学教学质量检测模拟试题【含答案】: 这是一份江西省南昌市心远中学2024-2025学年九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江西省南昌市名校2024-2025学年九年级数学第一学期开学检测模拟试题【含答案】: 这是一份江西省南昌市名校2024-2025学年九年级数学第一学期开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江西省中学等学校九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份2025届江西省中学等学校九年级数学第一学期开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。