终身会员
搜索
    上传资料 赚现金

    2025届江西省中学等学校九年级数学第一学期开学教学质量检测模拟试题【含答案】

    立即下载
    加入资料篮
    2025届江西省中学等学校九年级数学第一学期开学教学质量检测模拟试题【含答案】第1页
    2025届江西省中学等学校九年级数学第一学期开学教学质量检测模拟试题【含答案】第2页
    2025届江西省中学等学校九年级数学第一学期开学教学质量检测模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届江西省中学等学校九年级数学第一学期开学教学质量检测模拟试题【含答案】

    展开

    这是一份2025届江西省中学等学校九年级数学第一学期开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)观察下列一组数:1,1,,,,,______。按照这组数的规律横线上的数是( )
    A.B.C.D.
    2、(4分)式子在实数范围内有意义,则x的取值范围( )
    A.x≤2B.x<2C.x>2D.x≥2
    3、(4分)若ab>0,ac<0,则一次函数的图象不经过下列个象限( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    4、(4分)将一张矩形纸片按照如图 所示的方式折叠,然后沿虚线 AB 将阴影部分剪下,再将 剪下的阴影部分纸片展开,所得到的平面图形是( )
    A.直角三角形B.等腰三角形C.矩形D.菱形
    5、(4分)如图,已知点是线段的黄金分割点,且.若表示以为边的正方形面积,表示长为、宽为的矩形面积,则与的大小关系为( )
    A.B.C.D.不能确定
    6、(4分)(2017广西贵港第11题)如图,在中, ,将绕顶点逆时针旋转得到是的中点,是的中点,连接,若,则线段的最大值是 ( )
    A.B.C.D.
    7、(4分)下列各曲线中,不表示y是x的函数的是
    A.B.C.D.
    8、(4分)、、为三边,下列条件不能判断它是直角三角形的是( )
    A.B.,,
    C.D.,,(为正整数)
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,△ABC中,AB=AC=5,BC=6,M为BC的中点,MN⊥AC于N点,则MN=(________).
    10、(4分)如果一组数据的方差为,那么这组数据的标准差是________.
    11、(4分)如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(-3,),AB=1,AD=2,将矩形ABCD向右平移m个单位,使点A,C恰好同时落在反比例函数y=的图象上,得矩形A′B′C′D′,则反比例函数的解析式为______.
    12、(4分)某人参加一次应聘,计算机、英语、操作成绩(单位:分)分别为 80、90、82, 若三项成绩分别按 3:5:2,则她最后得分的平均分为_____.
    13、(4分)计算:_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在直角坐标系中,直线l1经过(2,3)和(-1,-3):直线l2经过原点O,且与直线l1交于点P(-2,a).
    (1)求a的值;
    (2)(-2,a)可看成怎样的二元一次方程组的解?
    15、(8分)甲、乙两名同学进入八年级后,某科6次考试成绩如图所示:
    (1)请根据统计图填写下表:
    (2)请你分别从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析,你认为反映出什么问题?
    ①从平均数和方差相结合分析;
    ②从折线图上两名同学分数的走势上分析.
    16、(8分)在“2019慈善一日捐”活动中,某校八年级(1)班40名同学的捐款情况如下表:
    根据表中提供的信息回答下列问题:
    (1)x的值为________ ,捐款金额的众数为________元,中位数为________元.
    (2)已知全班平均每人捐款57元,求a的值.
    17、(10分)解不等式.
    18、(10分)计算
    (1)
    (2)
    (3)
    (4)(+3﹣2)×2
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知一次函数y=-x+1与y=kx+b的图象在同一直角坐标系中的位置如图(直线l1和l2),它们的交点为P,那么关于x的不等式-x+1>kx+b的解集为______.
    20、(4分)如图,己知: ,,,,则_______.
    21、(4分)如图,在正方形ABCD中,以A为顶点作等边三角形AEF,交BC边于点E,交DC边于点F,若△AEF的边长为2,则图中阴影部分的面积为_____.
    22、(4分)下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:
    根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛,应该选择__________.
    23、(4分)如图,在平面直角坐标系中,△ABC与△A′B'C′关于点P位似且顶点都在格点上,则位似中心P的坐标是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)解不等式组并求其整数解的和.
    解:解不等式①,得_______;
    解不等式②,得________;
    把不等式①和②的解集在数轴上表示出来:
    原不等式组的解集为________,
    由数轴知其整数解为________,和为________.
    在解答此题的过程中我们借助于数轴上,很直观地找出了原不等式组的解集及其整数解,这就是“数形结合的思想”,同学们要善于用数形结合的思想去解决问题.
    25、(10分)如图,边长为3正方形的顶点与原点重合,点在轴,轴上。反比例函数的图象交于点,连接,.
    (1)求反比例函数的解析式;
    (2)过点作轴的平行线,点在直线上运动,点在轴上运动.
    ①若是以为直角顶点的等腰直角三角形,求的面积;
    ②将“①”中的“以为直角顶点的”去掉,将问题改为“若是等腰直角三角形”,的面积除了“①”中求得的结果外,还可以是______.(直接写答案,不用写步骤)
    26、(12分)如图,在▱ABCD中,AB=6,AC=10,BD=16,求△COD的周长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    由数据可发现从第三项起每一项都等于根号下前两项的根号下的数字之和,由此规律即可求出横线上的数
    【详解】
    解:由题意得,一组数1,1,,,,=,
    则2=1+1,3+1+2,5=2+3,8=3+5,即从第三项起每一项都等于根号下前两项的根号下的数字之和,所以横线上的数是,
    故选:B.
    本题考查了归纳推理,难点在于发现其中的规律,考查观察、分析、归纳能力.
    2、C
    【解析】
    分析:
    根据使“分式和二次根式有意义的条件”进行分析解答即可.
    详解:
    ∵式子在实数范围内有意义,
    ∴ ,解得:.
    故选C.
    点睛:熟记:“使分式有意义的条件是:分母的值不能为0;使二次根式有意义的条件是:被开方数为非负数”是解答本题的关键.
    3、C
    【解析】
    根据ab>0,ac<0,可以得到a、b、c的正负,从而可以判断一次函数的图象经过哪几个象限,不经过哪个象限,本题得以解决.
    【详解】
    解:∵ab>0,ac<0,
    ∴当a>0时,b>0,c<0,当a<0时,b<0,c>0,
    ∴当a>0时,b>0,c<0时,一次函数的图象经过第一、二、四象限,不经过第三象限,
    当a<0时,b<0,c>0时,一次函数的图象经过第一、二、四象限,不经过第三象限,
    由上可得,一次函数的图象不经过第三象限,
    故选:C.
    本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
    4、D
    【解析】
    解答该类剪纸问题,通过自己动手操作即可得出答案;或者通过折叠的过程可以发现:该四边形的对角线互相垂直平分,继而进行判断.
    【详解】
    解:易得阴影部分展开后是一个四边形,
    ∵四边形的对角线互相平分,
    ∴是平行四边形,
    ∵对角线互相垂直,
    ∴该平行四边形是菱形,
    故选:D.
    本题主要考查了剪纸问题,学生的分析能力,培养学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
    5、B
    【解析】
    根据黄金分割的概念和正方形的性质知:BC2=AB•AC,变形后求解即可.
    【详解】
    ∵C是线段AB的黄金分割点,且BC>AC,
    ∴BC2=AB•AC,
    ∴S1= BC2= AB•AC=S2,
    故选B.
    此题主要是考查了线段的黄金分割点的概念,根据概念表示出三条线段的关系,再结合正方形的面积进行分析计算是解题关键.
    6、B
    【解析】
    试题解析:如图连接PC.
    在Rt△ABC中,∵∠A=30°,BC=2,
    ∴AB=4,
    根据旋转不变性可知,A′B′=AB=4,
    ∴A′P=PB′,
    ∴PC=A′B′=2,
    ∵CM=BM=1,
    又∵PM≤PC+CM,即PM≤3,
    ∴PM的最大值为3(此时P、C、M共线).
    故选B.
    7、C
    【解析】
    设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的意义即可求出答案.
    【详解】
    显然A、B、D选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;
    C选项对于x取值时,y都有2个值与之相对应,则y不是x的函数;
    故选:C.
    本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.
    8、C
    【解析】
    根据三角形内角和定理可得C是否是直角三角形;根据勾股定理逆定理可判断出A、B、D是否是直角三角形.
    【详解】
    解:A. 即,根据勾股定理逆定理可判断△ABC为直角三角形;
    B. ,,,因为,即,,根据勾股定理逆定理可判断△ABC为直角三角形;
    C. 根据三角形内角和定理可得最大的角,可判断△ABC为锐角三角形;
    D. ,,(为正整数),因为,即,根据勾股定理逆定理可判断△ABC为直角三角形;
    故选:C
    本题考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.
    【详解】
    解:连接AM,
    ∵AB=AC,点M为BC中点,
    ∴AM⊥CM(三线合一),BM=CM,
    ∵AB=AC=5,BC=6,
    ∴BM=CM=3,
    在Rt△ABM中,AB=5,BM=3,
    ∴根据勾股定理得:,
    又,
    ∴.
    综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.
    10、
    【解析】
    求出9的算术平方根即可.
    【详解】
    ∵S²=9,S==3,
    ​故答案为3
    本题考查的是标准差的计算,计算标准差需要先知道方差,标准差即方差的算术平方根.
    11、y=
    【解析】
    由四边形ABCD是矩形,得到AB=CD=1,BC=AD=2,根据A(-3,),AD∥x轴,即可得到B(-3,),C(-1,),D(-1,);根据平移的性质将矩形ABCD向右平移m个单位,得到A′(-3+m,),C(-1+m,),由点A′,C′在在反比例函数y=(x>0)的图象上,得到方程(-3+m)=(-1+m),即可求得结果.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AB=CD=1,BC=AD=2,
    ∵A(-3,),AD∥x轴,
    ∴B(-3,),C(-1,),D(-1,);
    ∵将矩形ABCD向右平移m个单位,
    ∴A′(-3+m,),C(-1+m,),
    ∵点A′,C′在反比例函数y=(x>0)的图象上,
    ∴(-3+m)=(-1+m),
    解得:m=4,
    ∴A′(1,),
    ∴k=,
    ∴反比例函数的解析式为:y=.
    故答案为y=.
    本题考查了矩形的性质,图形的变换-平移,反比例函数图形上点的坐标特征,求反比例函数的解析式,掌握反比例函数图形上点的坐标特征是解题的关键.
    12、85.4 分
    【解析】
    根据加权平均数的概念,注意相对应的权比即可求解.
    【详解】
    8030%+9050%+8220%=85.4
    本题考查了加权平均数的求法,属于简单题,熟悉加权平均数的概念是解题关键.
    13、2
    【解析】
    先把二次根式化为最简二次根式,然后将括号内的式子进行合并,最后进一步加以计算即可.
    【详解】
    原式

    故答案为:2.
    本题主要考查了二次根式的混合运算,熟练掌握相关运算法则是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)a=-5;(2)可以看作二元一次方程组的解.
    【解析】
    (1)首先利用待定系数法求得直线的解析式,然后直接把P点坐标代入可求出a的值;
    (2)利用待定系数法确定l2得解析式,由于P(-2,a)是l1与l2的交点,所以点(-2,-5)可以看作是解二元一次方程组所得.
    【详解】
    .解:(1)设直线 的解析式为y=kx+b,将(2,3),(-1,-3)代入,
    ,解得,所以y=2x-1.
    将x=-2代入,得到a=-5;
    (2)由(1)知点(-2,-5)是直线与直线 交点,则:y=2.5x;
    因此(-2,a)可以看作二元一次方程组的解.
    故答案为:(1)a=-5;(2)可以看作二元一次方程组的解.
    本题综合考查待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及一次函数与二元一次方程组.
    15、(1)125,75,75,70;(2)①见解析;②见解析.
    【解析】
    (1)根据平均数、方差、中位数、众数的概念以及求解方法分别进行求解即可得;
    (2)①根据平均数以及方差的大小关系进行比较分析即可;
    ②根据折线图的走势进行分析即可.
    【详解】
    (1)甲方差:,
    甲的中位数:75,
    乙的平均数:,
    乙的众数为70,
    故答案为:125,75,75,70;
    (2)①从平均数看,甲同学的成绩比乙同学稍好,但是从方差看,乙同学的方差小,乙同学成绩稳定,综合平均数和方差分析,乙同学总体成绩比甲同学好;
    ②从折线图上两名同学分数的走势,甲同学的成绩在稳步直线上升,属于进步计较快,乙同学的成绩有较大幅度波动,不算稳定.
    本题考查了折线统计图,正确理解方差、中位数、平均数、众数的含义是解题的关键.
    16、(1)3;50;50 (2)1
    【解析】
    (1)总人数为40人,所以x为总人数减去已知人数;根据众数的定义,一组数据中出现次数最多的数叫众数,捐款金额50元人数最多则为众数;中位数的定义是将一组数据从大到小的顺序排列,处于最中间位置的数是中位数,如果这组数据的个数是偶数,则是中间两个数据的平均数.
    (2)根据平均数的定义求解,本题应是总捐款金额=平均数×总人数.
    【详解】
    解:(1)x=40-2-8-16-4-7=3;
    在几种捐款金额中,捐款金额50元有16人,人数最多,∴捐款金额的众数为50;
    将捐款金额按从小到大顺序排列,处于最中间位置的为50和50,所以中位数=(50+50)÷2=50.
    (2)由题意得, 20×2+30×8+50×16+3a+80×4+100×7=57×40,解得a=1.
    本题考查了平均数、中位数和众数,熟练掌握三者的定义及求解方法是解题的关键.
    17、.
    【解析】
    先去分母再移项,系数化为1,即可得到答案.
    【详解】
    将不等式两边同乘以2得,

    解得.
    本题考查解一元一次不等式,解题的关键是熟练掌握一元一次不等式的求解方法.
    18、(1)(2)(3) (4)1+1
    【解析】
    分析:(1)先将二次根式化为最简,然后再进行二次根式的除法及减法运算.(2) 运用平方差及完全平方式解答即可.(3) 将二次根式化为最简,然后再进行同类二次根式的合并即可.(4) 先将二次根式化为最简,然后再进行二次根式的乘法运算.
    详解:(1)原式=
    (2)原式=
    (3)原式=2﹣2+﹣=﹣;
    (4)(+3﹣2)×2=(+)×2=1+1.
    点睛:本题考查了二次根式的计算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、x<-1
    【解析】
    根据函数图像作答即可.
    【详解】
    ∵-x+1>kx+b
    ∴l1的图像应在 l2上方
    ∴根据图像得:x<-1.
    故答案为:x<-1.
    本题考查的知识点是函数的图像,解题关键是根据图像作答.
    20、15
    【解析】
    首先过D作直线AC的平行线DK,交l2于点N,再利用相似比例可得AC的长.
    【详解】
    解:过D作直线AC的平行线DK,交l2于点N





    故答案为15.
    本题主要考查平行线的性质,再结合考查相似比例的计算,难度系数较小,关键在于作AC的平行线.
    21、1
    【解析】
    先根据直角边和斜边相等,证出△ABE≌△ADF,从而得CE=CF,继而在△ECF利用勾股定理求出CE、CF长,再利用三角形的面积公式进行求解即可.
    【详解】
    ∵四边形ABCD是正方形,
    ∴AB=BC=CD=AD,∠B=∠C=∠D=90°,
    ∵△AEF是等边三角形,
    ∴AE=EF=AF=2,
    ∴Rt△ABE≌Rt△ADF(HL),
    ∴BE=DF,
    ∴EC=CF,
    又∵∠C=90°,
    ∴CE2+CF2=EF2=22,
    ∴CE=CF=,
    ∴S△ECF==1,
    故答案为:1.
    本题考查了正方形的性质,等边三角形性质,勾股定理,三角形的面积等知识,熟练掌握和灵活运用相关知识是解题的关键.
    22、丙
    【解析】
    由表中数据可知,丙的平均成绩和甲的平均成绩最高,而丙的方差也是最小的,成绩最稳定,所以应该选择:丙.
    故答案为丙.
    23、 (4,5)
    【解析】
    直接利用位似图形的性质得出对应点位置进而得出答案.
    【详解】
    解:如图所示:连接AA′,BB′,两者相交于点P,
    ∴位似中心P的坐标是(4,5).
    故答案为:(4,5).
    本题主要考查了位似变换,正确掌握位似图形的性质是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、详见解析.
    【解析】
    先求出不等式组的解集,然后找出其中的整数相加即可.
    【详解】

    解:解不等式①,得x≥-5;
    解不等式②,得x

    相关试卷

    2025届江西省宜春实验中学数学九年级第一学期开学教学质量检测试题【含答案】:

    这是一份2025届江西省宜春实验中学数学九年级第一学期开学教学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届江西省九江市第十一中学数学九年级第一学期开学教学质量检测模拟试题【含答案】:

    这是一份2025届江西省九江市第十一中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年浙江省诸暨市开放双语学校数学九年级第一学期开学教学质量检测模拟试题【含答案】:

    这是一份2024年浙江省诸暨市开放双语学校数学九年级第一学期开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map