终身会员
搜索
    上传资料 赚现金

    辽宁省大连市名校2025届九上数学开学学业质量监测模拟试题【含答案】

    立即下载
    加入资料篮
    辽宁省大连市名校2025届九上数学开学学业质量监测模拟试题【含答案】第1页
    辽宁省大连市名校2025届九上数学开学学业质量监测模拟试题【含答案】第2页
    辽宁省大连市名校2025届九上数学开学学业质量监测模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    辽宁省大连市名校2025届九上数学开学学业质量监测模拟试题【含答案】

    展开

    这是一份辽宁省大连市名校2025届九上数学开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列等式成立的是( )
    A. •=B.=2C.﹣=D.=﹣3
    2、(4分)如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正确结论的个数是( )
    A.2个B.3个C.4个D.5个
    3、(4分)若反比例函数,在每个象限内y随x的增大而减小,则m的取值范围是( )
    A.m>B.m<C.m>一D.m<一
    4、(4分)式子在实数范围内有意义,则的取值范围是( )
    A.B.C.D.
    5、(4分)某鞋店试销一款学生运动鞋,销量情况如图所示,鞋店经理要关心哪种型号的鞋是否畅销,下列统计量最有意义的是( )
    A.平均数B.中位数C.众数D.方差
    6、(4分)已知x(x﹣2)=3,则代数式2x2﹣4x﹣7的值为( )
    A.6B.﹣4C.13D.﹣1
    7、(4分)如图,直线与轴交于点,依次作正方形、正方形、…正方形使得点、、…,在直线上,点、、…,在轴上,则点的坐标是( )
    A.B.
    C.D.
    8、(4分)如图,在平面直角坐标系中,为,,与轴重合,反比例函数的图象经过中点与相交于点,点的横坐标为,则的长( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,四边形为正方形,点分别为的中点,其中,则四边形的面积为________________________.
    10、(4分)如图,在四边形ABCD中,AD∥BC,AD=4,BC=12,点E是BC的中点.点P、Q分别是边AD、BC上的两点,其中点P以每秒个1单位长度的速度从点A运动到点D后再返回点A,同时点Q以每秒2个单位长度的速度从点C出发向点B运动.当其中一点到达终点时停止运动.当运动时间t为_____秒时,以点A、P,Q,E为顶点的四边形是平行四边形.
    11、(4分)方程的解是_______.
    12、(4分)一组数据15、13、14、13、16、13的众数是______,中位数是______.
    13、(4分)如图,的面积为36,边cm,矩形DEFG的顶点D、G分别在AB、AC上,EF在BC上,若,则______cm.
    三、解答题(本大题共5个小题,共48分)
    14、(12分) (1)先化简,再求值:,其中
    (2)解方程:
    15、(8分)某商场欲购进果汁饮料和碳酸饮料共60箱,两种饮料每箱的进价和售价如下表所示。设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价-总进价)。
    (1)设商场购进碳酸饮料y箱,直接写出y与x的函数解析式;
    (2)求总利润w关于x的函数解析式;
    (3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润。
    16、(8分)如图,在▱ABCD中,∠BAD的角平分线交BC于点E,交DC的延长线于点F,连接DE.
    (1)求证:DA=DF;
    (2)若∠ADE=∠CDE=30°,DE=2,求▱ABCD的面积.
    17、(10分)如图,在 ABC ,C  90,AC<BC,D 为 BC 上一点,且到 A、B 两点的距离相等.
    (1)用直尺和圆规,作出点 D 的位置(不写作法,保留作图痕迹);
    (2)连结 AD,若 B  36 ,求∠CAD 的度数.
    18、(10分)如图,在矩形ABCD中,,.将矩形ABCD沿过点C的直线折叠,使点B落在对角线AC上的点E处,折痕交AB于点F.
    (1)求线段AC的长.
    (2)求线段EF的长.
    (3)点G在线段CF上,在边CD上存在点H,使以E、F、G、H为顶点的四边形是平行四边形,请画出,并直接写出线段DH的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)将直线y=2x-3平移,使之经过点(1,4),则平移后的直线是____.
    20、(4分)函数y=kx(k0)的图象上有两个点A1(,),A2(,),当,写出一个满足条件的函数解析式______________.
    21、(4分)将直线y=2x-3向上平移5个单位可得______直线.
    22、(4分)直角三角形有两边长为3和4,则斜边长为_____.
    23、(4分)某商店销售型和型两种电脑,其中型电脑每台的利润为400元,型电脑每台的利润为500元,该商店计划一次性购进两种型号的电脑共100台,设购进型电脑台,这100台电脑的销售总利润为元,则关于的函数解析式是____________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,边长为5的正方形OABC的顶点O在坐标原点处,点A,C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.
    (1)求证:CE=EP.
    (2)若点E的坐标为(3,0),在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.
    25、(10分)我们定义:如果两个三角形的两组对应边相等,且它们的夹角互补,我们就把其中一个三角形叫做另一个三角形的“夹补三角形”,同时把第三边的中线叫做“夹补中线.例如:图1中,△ABC与△ADE的对应边AB=AD,AC=AE,∠BAC+∠DAE=180°,AF是DE边的中线,则△ADE就是△ABC的“夹补三角形”,AF叫做△ABC的“夹补中线”.
    特例感知:
    (1)如图2、图3中,△ABC与△ADE是一对“夹补三角形”,AF是△ABC的“夹补中线”;
    ①当△ABC是一个等边三角形时,AF与BC的数量关系是: ;
    ②如图3当△ABC是直角三角形时,∠BAC=90°,BC=a时,则AF的长是 ;
    猜想论证:
    (2)在图1中,当△ABC为任意三角形时,猜想AF与BC的关系,并给予证明.
    拓展应用:
    (3)如图4,在四边形ABCD中,∠DCB=90°,∠ADC=150°,BC=2AD=6,CD=,若△PAD是等边三角形,求证:△PCD是△PBA的“夹补三角形”,并求出它们的“夹补中线”的长.
    26、(12分)如图,▱ABCD中,E为BC边的中点,连AE并与DC的延长线交于点F,求证:DC=CF.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    利用二次根式的乘法法则对、进行判断;利用二次根式的加减法对进行判断;利用二次根式的性质对进行判断.
    【详解】
    解:、原式,所以选项错误;
    、原式,所以选项正确;
    、原式,所以选项错误;
    、原式,所以选项错误.
    故选:.
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    2、D
    【解析】
    根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;根据角的和差关系求得∠GAF=45°;在直角△ECG中,根据勾股定理可证CE=2DE;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;求出S△ECG,由S△FCG=即可得出结论.
    【详解】
    ①正确.理由:
    ∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);
    ②正确.理由:
    ∵∠BAG=∠FAG,∠DAE=∠FAE.
    又∵∠BAD=90°,∴∠EAG=45°;
    ③正确.理由:
    设DE=x,则EF=x,EC=12-x.在直角△ECG中,根据勾股定理,得:(12﹣x)2+62=(x+6)2,解得:x=4,∴DE=x=4,CE=12-x=8,∴CE=2DE;
    ④正确.理由:
    ∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.
    又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;
    ⑤正确.理由:
    ∵S△ECG=GC•CE=×6×8=1.
    ∵S△FCG===.
    故选D.
    本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.
    3、A
    【解析】
    根据反比例函数的性质可得关于m的不等式,解不等式即可求得答案.
    【详解】
    由题意得:2m-1>0,
    解得:m>,
    故选A.
    本题考查了反比例函数的性质,①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
    4、D
    【解析】
    根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;
    【详解】
    解:式子在实数范围内有意义,
    即: ,
    解得:,
    故选:D;
    本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键.
    5、C
    【解析】
    众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.
    【详解】
    对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.
    故选:C.
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    6、D
    【解析】
    将x(x﹣2)=3代入原式=2x(x﹣2)﹣7,计算即可得到结论.
    【详解】
    当x(x﹣2)=3时,原式=2x(x﹣2)﹣7=2×3﹣7=6﹣7=﹣1.
    故选D.
    本题考查了代数式求值,解题的关键是掌握整体代入思想的运用.
    7、D
    【解析】
    先求出直线y=x+1与y轴的交点坐标即可得出A1的坐标,故可得出OA1的长,根据四边形A1B1C1O是正方形即可得出B1的坐标,再把B1的横坐标代入直线y=x+1即可得出A1的坐标,同理可得出B2,B3的坐标,可以得到规律:Bn(2n−1,2n−1),据此即可求解.
    【详解】
    解:∵令x=0,则y=1,
    ∴A1(0,1),
    ∴OA1=1.
    ∵四边形A1B1C1O是正方形,
    ∴A1B1=1,
    ∴B1(1,1).
    ∵当x=1时,y=1+1=2,
    ∴B2(3,2);
    同理可得,B3(7,4);
    ∴B1的纵坐标是:1=20,B1的横坐标是:1=21−1,
    ∴B2的纵坐标是:2=21,B2的横坐标是:3=22−1,
    ∴B3的纵坐标是:4=22,B3的横坐标是:7=23−1,
    ∴Bn的纵坐标是:2n−1,横坐标是:2n−1,
    则Bn
    故选:D.
    本题考查了一次函数图象上点的坐标特征、正方形的性质和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题的关键.
    8、B
    【解析】
    把E点的横坐标代入,确定E的坐标,根据题意得到B的坐标为(2,4),把B的横坐标代入求得D的纵坐标,就可求得AD,进而求得BD.
    【详解】
    解:反比例函数的图象经过OB中点E,E点的横坐标为1,

    ∴E(1,2),
    ∴B(2,4),
    ∵△OAB为Rt△,∠OAB=90°,
    ∴AB=4,
    把x=2代入得,
    ∴AD=1,
    ∴BD=AB-AD=4-1=3,
    故选:B.
    此题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、三角形中位线性质,解题的关键是求得B、D的纵坐标.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4.
    【解析】
    先判定四边形EFGH为矩形,再根据中位线的定理分别求出EF、EH的长度,即可求出四边形EFGH的面积.
    【详解】
    解:∵四边形ABCD是正方形,点E、F、G、H分别是AB、BC、CD、DA的中点,
    ∴△AEH、△BEF、△CFG、△DGH都为等腰直角三角形,
    ∴∠HEF、∠EFG、∠FGH、∠GHE都为直角,
    ∴四边形EFGH是矩形,
    边接AC,则AC=BD=4,
    又∵EH是△ABD的中位线,
    ∴EH=BD=2,
    同理EF=AC=2,
    ∴四边形EFGH的面积为2×2=4.
    故答案为4.
    本题考查了正方形的性质,矩形的判定,三角形中位线定理.
    10、2或.
    【解析】
    分别从当Q运动到E和B之间与当Q运动到E和C之间去分析, 根据平行四边形的性质, 可得方程, 继而可求得答案.
    【详解】
    解:E是BC的中点,
    BE=CE=BC=12=6,
    ①当Q运动到E和C之间, 设运动时间为t, 则AP=t, DP=AD-AP=4-t, CQ=2t,EQ=CE-CQ=6-2t
    t=6-2t,
    解得: t=2;
    ②当Q运动到E和B之间,设运动时间为t,则AP=t, DP=AD-AP=4-t, CQ=2t,
    EQ=CQ-CE=2t-6,
    t=2t-6,
    解得: t=6(舍),
    ③P点当D后再返回点A时候,Q运动到E和B之间,设运动时间为t,
    则AP=4-(t-4)=8-t, EQ=2t-6,
    8-t=2t-6,,
    当运动时间t为2、秒时,以点P,Q,E,A为顶点的四边形是平行四边形.
    故答案为: 2或.
    本题主要考查平行四边形的性质及解一元一次方程.
    11、
    【解析】
    观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
    【详解】
    解:两边同时乘以得,

    解得,,
    检验:当时,,不是原分式方程的解;
    当时,,是原分式方程的解.
    故答案为:.
    本题考查了解分式方程:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
    12、13 13.5
    【解析】
    这组数据中出现次数最多的数为众数;把这组数按从小到大的顺序排列,因为数的个数是偶数个,那么中间两个数的平均数即是中位数由此解答.
    【详解】
    解:∵15、13、14、13、16、13中13出现次数最多有3次,
    ∴众数为13,
    将这组数从小到大排列为:13,13,13,14,15,16,最中间的两个数是13,14,所以中位数=(13+14)÷2=13.5
    故答案为:13;13.5.
    此题主要考查了中位数和众数的含义.
    13、6
    【解析】
    作AH⊥BC于H点,可得△ADG∽△ABC,△BDE∽△BAH,根据相似三角形对应边比例等于相似比可解题.
    【详解】
    解:作AH⊥BC于H点,
    ∵四边形DEFG为矩形,
    ∴△ADG∽△ABC,△BDE∽△BAH,
    ∵的面积为36,边cm
    ∴AH=6
    ∵EF=2DE,即DG=2DE
    解得:DE=3
    ∴DG=6
    故答案为:6
    本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.
    三、解答题(本大题共5个小题,共48分)
    14、 (1) , ;(2).
    【解析】
    (1)先进行除法运算,再通分进行化简,将 代入化简结果即可得到答案;
    (2) 方程两边都乘以,再移项,系数化为1,检验根的正确性,得到答案.
    【详解】
    (1)



    当时,原式
    (2)解方程:
    解:方程两边都乘以,得

    解这个方程,得
    检验:将代入原方程
    左边=右边=1
    ∴原方程的根是
    本题考查分式的化简和解分式方程,解题的关键是掌握分式的化简和解分式方程的方法.
    15、(1)y=60-x;(2)w=5x+420;(3)该商场购进两种饮料分别为40箱和20箱时,能获得最大利润620元.
    【解析】
    (1)根据购进果汁饮料和碳酸饮料共60箱即可求解;
    (2)根据总利润=每个的利润数量就可以表示出w与x之间的关系式;
    (3)由题意得40x+25(60-x)≤2100,解得x的值,然后可求y值,根据一次函数的性质可以求出进货方案及最大利润.
    【详解】
    (1)y与x的函数解析式为y=60-x.
    (2)总利润w关于x的函数解析式为
    w=(52-40)x+(32-25)(60-x)=5x+420.
    (3)由题意得40x+25(60-x)≤2100,解得x≤40,
    ∵y=5x+420,y随x的增大而增大,
    ∴当x=40时,y最大值=5×40+420=620(元),
    此时购进碳酸饮料60-40=20(箱).
    ∴该商场购进两种饮料分别为40箱和20箱时,能获得最大利润620元.
    本题考查了一次函数的实际运用,由销售问题的数量关系求出函数的解析式,列一元一次不等式解实际问题的运用,一次函数的性质的运用,解答时求出函数的解析式是关键.
    16、(1)详见解析;(1)4
    【解析】
    (1)根据平行四边形的性质得出AB=CD,AD∥BC,求出∠FAD=∠AFB,根据角平分线定义得出∠FAD=∠FAB,求出∠AFB=∠FAB,即可得出答案;
    (1)求出△ABF为等边三角形,根据等边三角形的性质得出AF=BF=AB,∠ABE=60°,在Rt△BEF中,∠BFA=60°,BE=,解直角三角形求出EF=1,BF=4,AB=BF=4,BC=AD=1,即可得出答案.
    【详解】
    (1)证明:∵四边形ABCD为平行四边形,
    ∴AB∥CD.
    ∴∠BAF=∠F.
    ∵AF平分∠BAD,
    ∴∠BAF=∠DAF.
    ∴∠F=∠DAF.
    ∴AD=FD.
    (1)解:∵∠ADE=∠CDE=30°,AD=FD,
    ∴DE⊥AF.
    ∵tan∠ADE=,
    ∴AE=1.
    ∴S平行四边形ABCD=1S△ADE=AE•DE=4.
    本题考查了平行四边形的性质及解直角三角形的知识,体现了转化的数学思想,难度不大.
    17、 (1)作图见解析;(2)18°
    【解析】
    分析:(1)根据“到A,B两点的距离相等”可知点D在线段AB的中垂线上,据此作AB中垂线与BC交点可得;
    (2)先根据直角三角形的性质得∠CAB=54°,再由DA=DB知∠B=∠DAB=36°,从而根据∠CAD=∠CAB﹣∠DAB可得答案.
    详解:(1)如图所示,点D即为所求;

    (2)在△ABC中,∵∠C=90°,∠B=36°,∴∠CAB=54°,由(1)知DA=DB,∴∠B=∠DAB=36°,则∠CAD=∠CAB﹣∠DAB=18°.
    点睛:本题主要考查作图﹣复杂作图,解题的关键是掌握线段垂直平分线的性质和等边对等角的性质.
    18、(1);(2);(3)见解析,.
    【解析】
    (1)根据勾股定理计算AC的长;
    (2)设EF=x,在Rt△AEF中,由勾股定理列方程可解答;
    (3)先正确画图,根据折叠的性质和平行线的性质证明CH=GH可解答.
    【详解】
    解:(1)∵四边形ABCD矩形,.
    在中,;
    (2)设EF的长为x.
    由折叠,得,,,
    ,,,
    在中,,即,
    解得..
    (3)如图,∵四边形EFGH是平行四边形,
    ∴EF∥GH,EF=GH=3,
    ∴∠EFC=∠CGH,
    ∵AB∥CD,
    ∴∠BFC=∠DCF,
    由折叠得:∠BFC=∠EFC,
    ∴∠CGH=∠DCF,
    ∴CH=GH=3,
    ∴DH=CD-CH=8-3=1.
    故答案为:(1);(2);(3)见解析,.
    本题是四边形的综合题目,考查了矩形的性质、折叠的性质、平行四边形的性质、平行线的性质、勾股定理等知识;熟练掌握矩形的性质和折叠的性质,由勾股定理得出方程是解决问题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、y=2x+2
    【解析】
    【分析】先由平移推出x的系数是2,可设直线解析式是y=2x+k,把点(1,4)代入可得.
    【详解】由已知可设直线解析式是y=2x+k,
    因为,直线经过点(1,4),
    所以,4=2+k
    所以,k=2
    所以,y=2x+2
    故答案为y=2x+2
    【点睛】本题考核知识点:一次函数性质.解题关键点:熟记一次函数性质.
    20、y=-x(k

    相关试卷

    2025届浙江省台州市名校九上数学开学学业质量监测模拟试题【含答案】:

    这是一份2025届浙江省台州市名校九上数学开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届安徽省亳州市名校九上数学开学学业质量监测模拟试题【含答案】:

    这是一份2025届安徽省亳州市名校九上数学开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年四川省广安市名校九上数学开学学业质量监测模拟试题【含答案】:

    这是一份2024年四川省广安市名校九上数学开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map