2024-2025学年辽宁省沈阳市第一二七中学九上数学开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,),分别以A,B为圆心,大于AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为( )
A.(2,2)B.(2,)C.(,2)D.(+1,
2、(4分)关于的一元二次方程有实数根,则的取值范围是( )
A.B.
C.且D.且
3、(4分)矩形的对角线一定具有的性质是( )
A.互相垂直B.互相垂直且相等
C.相等D.互相垂直平分
4、(4分)以下四个命题正确的是
A.平行四边形的四条边相等
B.矩形的对角线相等且互相垂直平分
C.菱形的对角线相等
D.一组对边平行且相等的四边形是平行四边形
5、(4分)不等式 的解集为( ).
A.B.C.D.
6、(4分)已知三角形的周长是1.它的三条中位线围成的三角形的周长是( )
A.1B.12C.8D.4
7、(4分)如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=4,若点Q是射线OB上一点,OQ=3,则△ODQ的面积是( )
A.3B.4
C.5D.6
8、(4分)矩形、菱形、正方形都具有的性质是( )
A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线互相平分且相等
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在▱ABCD中,,在边AD上取点E,使,则等于______度.
10、(4分)某校对初一全体学生进行一次视力普查,得到如下统计表,视力在这个范围的频率为__________.
11、(4分)如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠ECD=___°.
12、(4分)为了考察甲、乙两块地小麦的长势,分别从中随机抽出10株苗,测得苗高如图所示.若和 分别表示甲、乙两块地苗高数据的方差,则________.(填“>”、“<”或“=”).
13、(4分)若,则xy的值等于_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,点,分别在,延长线上,,.
(1)求证:四边形是平行四边形
(2)若,,求的长.
15、(8分)如图,在平面直角坐标系xOy中,A(0,5),直线x=-5与x轴交于点D,直线y=-x-与x轴及直线x=-5分别交于点C,E.点B,E关于x轴对称,连接AB.
(1)求点C,E的坐标及直线AB的解析式;
(2)若S=S△CDE+S四边形ABDO,求S的值;
(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC的面积,如此不更快捷吗?”但大家经反复验算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.
16、(8分)如图,在▱ABCD中,E,F分别是边AB,CD的中点,求证:AF=CE.
17、(10分)如图,在□ABCD中,AC,BD相交于点O,点E在AB上,点F在CD上,EF经过点O.
求证:四边形BEDF是平行四边形.
18、(10分)甲、乙两名射击运动员进行射击比赛,两人在相同的条件下各射击10次,射击的成绩如图所示.根据图中信息,解答下列问题:
(1)算出乙射击成绩的平均数;
(2)经计算,甲射击成绩的平均数为8,乙射击成绩的方差为1.2,请你计算出甲射击成绩的方差,并判断谁的射击成绩更加稳定.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)方程的解是__________.
20、(4分)化简b 0 _______.
21、(4分)四边形ABCD中,已知AD∥BC,要使四边形ABCD为平行四边形,需要增加的边的条件是_________.
22、(4分) “a的3倍与b的差不超过5”用不等式表示为__________.
23、(4分)若点与点关于原点对称,则_______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)本工作,某校对八年级一班的学生所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图所示的两幅不完整的统计图(校服型号以身高作为标准,共分为6种型号)。
条形统计图
扇形统计图
根据以上信息,解答下列问题:
(1)该班共有多少名学生?其中穿型校服的学生有多少名?
(2)在条形统计图中,请把空缺部分补充完整;
(3)在扇形统计图中,请计算型校服所对应的扇形圆心角的大小;
(4)求该班学生所穿校服型号的中位数。
25、(10分)矩形ABCO中,O(0,0),C(0,3),A(a,0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO得到矩形AFED.
(1)如图1,当点D落在边BC上时,求BD的长(用a的式子表示);
(2)如图2,当a=3时,矩形AFED的对角线AE交矩形ABCO的边BC于点G,连结CE,若△CGE是等腰三角形,求直线BE的解析式;
(3)如图3,矩形ABCO的对称中心为点P,当P,B关于AD对称时,求出a的值,此时在x轴、y轴上是否分别存在M,N使得四边形EFMN为平行四边形,若存在直接写出M,N坐标,不存在说明理由.
26、(12分)四川汶川大地震牵动了三百多万滨州人民的心,全市广大中学生纷纷伸出了援助之手,为抗震救灾踊跃捐款。滨州市振兴中学某班的学生对本校学生自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据。下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元的学生一共42人。
(1)他们一共调查了多少人?
(2)这组数据的众数、中位数各是多少?
(3)若该校共有1560名学生,估计全校学生捐款多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
连接DB,如图,利用基本作图得到EF垂直平分AB,则DA=DB,再根据菱形的性质得到AD∥BC,AD=AB,则可判断△ADB为等边三角形,所以∠DAB=∠ABO=60°,然后计算出AD=2,从而得到D点坐标.
【详解】
连接DB,如图,
由作法得EF垂直平分AB,
∴DA=DB,
∵四边形ABCD是菱形,
∴AD∥BC,AD=AB,
∴AD=AB=DB,
∴△ADB为等边三角形,
∴∠DAB=60°,
∴∠ABO=60°,
∵A(0,),
∴OA=,
∴OB=OA=1,AB=2OB=2,
∴AD=AB=2,
而AD平行x轴,
∴D(2,).
故选:B.
考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和菱形的性质
2、D
【解析】
由方程是一元二次方程可得:,由方程有实数根列不等式得的范围,综合得到答案
【详解】
解:因为一元二次方程有实数根,所以:
且,
解得:且.
故选D.
本题考查的是一元二次方程的根的情况,考查的是对根的判别式的理解,掌握一元二次方程根的判别式是解题关键.
3、C
【解析】
根据矩形的性质即可判断.
【详解】
因为矩形的对角线相等且互相平分,所以选项C正确,
故选C.
本题考查矩形的性质,解题的关键是记住矩形的性质.
4、D
【解析】
根据平行四边形的性质与判定、矩形的性质和菱形的性质判断即可.
【详解】
解:A、菱形的四条边相等,错误;
B、矩形的对角线相等且平分,错误;
C、菱形的对角线垂直,错误;
D、一组对边平行且相等的四边形是平行四边形,正确.
故选D.
本题考查了命题与定理的知识,解题的关键是了解平行四边形的性质、矩形的性质和菱形的性质,难度一般.
5、B
【解析】
先移项,再系数化为1即可得到不等式的解集.
【详解】
解:移项得:
合并同类项得:
系数化为1得:
故选:B
本题考查了一元一次不等式的解法,熟练掌握计算法则是关键,当两边除以负数时,要注意不等号的方向要改变.
6、C
【解析】
由中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.
【详解】
解:∵三角形的周长是1,
∴它的三条中位线围成的三角形的周长是:1×=2.
故选:C.
此题主要考查了三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.
7、D
【解析】
过点D作DH⊥OB于点H,如图,根据角平分线的性质可得DH=DP=4,再根据三角形的面积即可求出结果.
【详解】
解:过点D作DH⊥OB于点H,如图,
∵OC是∠AOB的角平分线,DP⊥OA,DH⊥OB,
∴DH=DP=4,
∴△ODQ的面积=.
故选:D.
本题主要考查了角平分线的性质,属于基本题型,熟练掌握角平分线的性质定理是解题关键.
8、B
【解析】
矩形、菱形、正方形都是特殊的平行四边形,因而平行四边形的性质就是四个图形都具有的性质.
【详解】
解:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.
故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.
故选:B.
本题主要考查了正方形、矩形、菱形、平行四边形的性质,理解四个图形之间的关系是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.
【详解】
在平行四边形ABCD中,∠A=130°,
∴∠BCD=∠A=130°,∠D=180°-130°=50°,
∵DE=DC,
∴∠ECD=×(180°-50°)=1°,
∴∠ECB=130°-1°=1°.
故答案为1.
本题主要考查平行四边形对角相等和邻角互补的性质,熟练掌握性质是解题的关键.
10、0.1
【解析】
【分析】先求出视力在4.9≤x<5.5这个范围内的频数,然后根据“频率=频数÷总数”进行计算即可得答案.
【详解】视力在4.9≤x<5.5这个范围的频数为:60+10=70,
则视力在4.9≤x<5.5这个范围的频率为:=0.1,
故答案为:0.1.
【点睛】本题考查了频率,熟练掌握频率的定义是解题的关键.
11、17.1.
【解析】
根据矩形的性质由∠ADF求出∠CDF,再由等腰三角形的性质得出∠ECD即可.
【详解】
解:∵四边形ABCD是矩形,
∴∠ADC=90°,
∵∠ADF=21°,
∴∠CDF=∠ADC﹣∠ADF=90°﹣21°=61°,
∵DF=DC,
∴∠ECD=,
故答案为:17.1.
本题考查了矩形的性质,等腰三角形的性质,解本题的关键是求出∠CDF.是一道中考常考的简单题.
12、<
【解析】
方差用来计算每一个变量(观察值)与总体均数之间的差异,所以从图像看苗高的波动幅度,可以大致估计甲、乙两块地苗高数据的方差.
【详解】
解:由图可知,甲、乙两块地的苗高皆在12cm上下波动,但乙的波动幅度比甲大,
∴ 则
故答案为:<
本题考查了方差,方差反映了数据的波动程度,方差越大,数据的波动越大,正确理解方差的含义是解题的关键.
13、1
【解析】
直接利用偶次方的性质以及二次根式的性质得出x,y的值进而得出答案.
【详解】
解:∵,
∴x-1=0, y-1=0,
解得:x=1,y=1,
则xy=1.
此题主要考查了完全平方公式,偶次方的性质以及二次根式的性质,正确掌握相关性质是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)
【解析】
(1)由在平行四边形ABCD中,AB∥DC,可得AB∥DE,又由AE∥BD,即可证得四边形 ABDE是平行四边形;
(2)由(1)易得EC=2AB,又由∠ABC=60°,可求得∠ECF=60°,然后由EF⊥BF,证得EC=2CF,即可得AB=CF,求得答案.
【详解】
(1)证明:在平行四边形中,,
,
四边形是平行四边形
(2)解:在▱ABCD中,AB=DC,在▱ABDE中,AB=ED,
∴EC=2AB
∵AB∥DC,∠ABC=60°.
∴∠ECF=∠ABC=60°.
∵EF⊥BF,
∴∠CEF=90°-∠ECF=30°,
∴EC=2CF,
∴AB=EC=CF=.
此题考查了平行四边形的判定与性质以及含30°的直角三角形的性质.注意利用有两组对边分别平行的四边形是平行四边形定理的应用是解此题的关键.
15、(1)C(-13,0),E(-5,-3),;(2)32;(3)见解析.
【解析】
(1)利用坐标轴上点的特点确定出点C的坐标,再利用直线的交点坐标的确定方法求出点E坐标,进而得到点B坐标,最后用待定系数法求出直线AB解析式;
(2)直接利用直角三角形的面积计算方法和直角梯形的面积的计算即可得出结论,
(3)先求出直线AB与x轴的交点坐标,判断出点C不在直线AB上,即可.
【详解】
(1)在直线中,令y=0,则有0=,
∴x=﹣13,
∴C(﹣13,0),
令x=﹣5,代入,解得y=﹣3,
∴E(﹣5,﹣3),
∵点B,E关于x轴对称,
∴B(﹣5,3),
∵A(0,5),
∴设直线AB的解析式为y=kx+5,
∴﹣5k+5=3,
∴k=,
∴直线AB的解析式为;
(2)由(1)知E(﹣5,﹣3),
∴DE=3,
∵C(﹣13,0),
∴CD=﹣5﹣(﹣13)=8,
∴S△CDE=CD×DE=12,
由题意知,OA=5,OD=5,BD=3,
∴S四边形ABDO=(BD+OA)×OD=20,
∴S=S△CDE+S四边形ABDO=12+20=32;
(3)由(2)知,S=32,
在△AOC中,OA=5,OC=13,
∴S△AOC=OA×OC==32.5,
∴S≠S△AOC,
理由:由(1)知,直线AB的解析式为,令y=0,则0=,
∴x=﹣≠﹣13,
∴点C不在直线AB上,
即:点A,B,C不在同一条直线上,
∴S△AOC≠S.
此题是一次函数综合题,主要考查了坐标轴上点的特点,对称的性质,待定系数法,三角形,直角梯形的面积的计算,解(1)的关键是确定出点C,E的坐标,解(2)的关键是特殊几何图形的面积的计算,解(3)的关键是确定出直线AB与x轴的交点坐标,是一道常规题.
16、见解析.
【解析】
方法一:先根据平行四边形的性质及中点的定义得出AE=FC,AE∥FC,再根据一组对边平行且相等的四边形是平行四边形证出四边形AECF是平行四边形,然后根据平行四边形的对边相等得出AF=CE;
方法二:先利用“边角边”证明△ADF≌△CBE,再根据全等三角形的对应边相等得出AF=CE.
【详解】
证明:(证法一):
∵四边形ABCD为平行四边形,
∴AB∥CD,AB=CD,
又∵E、F是AB、CD的中点,
∴AE=AB,CF=CD,
∴AE=CF,AE∥CF,
∴四边形AECF是平行四边形,
∴AF=CE.
(证法二):
∵四边形ABCD为平行四边形,
∴AB=CD,AD=BC,∠B=∠D,
又∵E、F是AB、CD的中点,
∴BE=AB,DF=CD,
∴BE=DF,
∴△ADF≌△CBE(SAS),
∴AF=CE.
本题考查了证明两条线段相等的方法,一般来说,可以证明这两条线段是一个平行四边形的一组对边,也可以证明这两条线段所在的三角形全等.注意根据题目的已知条件,选择合理的判断方法.
17、见解析
【解析】
根据平行四边形性质,先证△ODF≌△OBE,得OF=OE,又 OD=OB,可证四边形BEDF是平行四边形.
【详解】
∵在□ABCD中,AC,BD相交于点O,
∴DC∥AB ,OD=OB.
∴∠FDO=∠EBO,∠DFO=∠BEO.
∴△ODF≌△OBE.
∴OF=OE.
∴四边形BEDF是平行四边形.
本题考核知识点:平行四边形的性质和判定. 解题关键点:熟记平行四边形的性质和判定.
18、(1)8;(2)乙.
【解析】
(1)用乙10次射击的成绩之和除以10即可得;
(2)根据方差的计算方法求出甲的方差,方差小的成绩更加稳定.
【详解】
解:(1);
(2),
∵;
∴乙的射击成绩更稳定.
故答案为(1)8;(2)乙.
本题考查了求平均数和方差,以及利用方差做判断,方差越小,数据的波动越小,更稳定.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据解无理方程的方法可以解答此方程,注意无理方程要检验.
【详解】
解:∵,
∴1-2x=x2,
∴x2+2x-1=0,
∴(x+1)(x-1)=0,
解得,x1=-1,x2=1,
经检验,当x=1时,原方程无意义,当x=-1时,原方程有意义,
故原方程的根是x=-1,
故答案为:x=-1.
本题考查无理方程,解答本题的关键是明确解无理方程的方法.
20、
【解析】
式子的分子和分母都乘以 即可得出 ,根据b是负数去掉绝对值符号即可.
【详解】
∵b<0,
∴=.
故答案为: .
此题考查分母有理化,解题关键在于掌握运算法则
21、(答案不唯一)
【解析】
根据平行四边形的判定:两组对边分别平行的四边形是平行四边形,即可得出答案.
【详解】
根据平行四边形的判定,可再添加一个条件:
故答案为:(答案不唯一)
本题考查平行四边形的判定,掌握常见的判定方法是解题关键.
22、
【解析】
根据“a的3倍与b的差不超过5”,则.
【详解】
解:根据题意可得出:;
故答案为:
此题主要考查了由实际问题抽象出一元一次不等式,注意不大于即为小于等于.
23、
【解析】
直接利用关于原点对称点的性质得出a,b的值.
【详解】
解:∵点A(a,1)与点B(−3,b)关于原点对称,
∴a=3,b=−1,
∴ab=3-1=.
故答案为:.
此题主要考查了关于原点对称的点的性质,正确记忆横纵坐标的关系是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)50,10;(2)见解析;(3)14.4°;(4)170型
【解析】
(1)根据穿165型的人数与所占的百分比列式进行计算即可求出学生总人数,再乘以175型所占的百分比计算即可得解;
(2)求出185型的人数,然后补全统计图即可;
(3)用185型所占的百分比乘以360°计算即可得解;
(4) 根据中位数的定义求解即可.
【详解】
解:(1)15÷30%=50(名),50×20%=10(名),
即该班共有50名学生,其中穿175型校服的学生有10名.
(2)185型的学生人数为:50-3-15-15-10-5=50-48=2(名),
补全统计图如图所示:
(3)185型校服所对应的扇形圆心角为:;
(4)∵第25和26名学生都穿170型,
∴中位数是170型.
本题考查的是条形统计图和扇形统计图的综合运用,中位数的定义.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
25、(1)BD=;(2)y=﹣x+6;(3)M(,0),N(0,)
【解析】
(1)如图1,当点D落在边BC上时,BD2=AD2-AB2,即可求解;
(2)分CG=EG、CE=GE、CE=CG三种情况分别求解;
(3)①由点P为矩形ABCO的对称中心,得到求得直线PB的解析式为,得到直线AD的解析式为:,解方程即可得到结论;②根据①中的结论得到直线AD 的解析式为,求得∠DAB=30°,连接AE,推出A,B,E三点共线,求得,设M(m,0),N(0,n),解方程组即可得到结论.
【详解】
(1)如图1,
在矩形ABCO中,∠B=90°
当点D落在边BC上时,BD2=AD2﹣AB2,
∵C(0,3),A(a,0)
∴AB=OC=3,AD=AO=a,
∴BD=;
(2)如图2,连结AC,
∵a=3,∴OA=OC=3,
∴矩形ABCO是正方形,∴∠BCA=45°,
设∠ECG的度数为x,
∴AE=AC,∴∠AEC=∠ACE=45°+x,
①当CG=EG时,x=45°+x,
解得x=0,不合题意,舍去;
②当CE=GE时,如图2,
∠ECG=∠EGC=x
∵∠ECG+∠EGC+∠CEG=180°,
∴x+x+(45°+x)=180°,解得x=45°,
∴∠AEC=∠ACE=90°,不合题意,舍去;
③当CE=CG时,∠CEG=∠CGE=45°+x,
∵∠ECG+∠EGC+∠CEG=180°,
∴x+(45°+x)+(45°+x)=180°,解得x=30°,
∴∠AEC=∠ACE=75°,∠CAE=30°
如图3,连结OB,交AC于点Q,过E作EH⊥AC于H,连结BE,
∴EH=AE=AC,BQ=AC,
∴EH=BQ,EH∥BQ且∠EHQ=90°
∴四边形EHQB是矩形
∴BE∥AC,
设直线BE的解析式为y=﹣x+b,
∵点B(3,3)在直线上,则b=6,
∴直线BE的解析式为y=﹣x+6;
(3)①∵点P为矩形ABCO的对称中心,
∴,
∵B(a,3),
∴PB的中点坐标为:,
∴直线PB的解析式为,
∵当P,B关于AD对称,
∴AD⊥PB,
∴直线AD的解析式为:,
∵直线AD过点,∴,
解得:a=±3,
∵a≥3,
∴a=3;
②存在M,N;
理由:∵a=3,
∴直线AD 的解析式为y=﹣x+9,
∴∴∠DAO=60°,
∴∠DAB=30°,
连接AE,
∵AD=OA=3,DE=OC=3,
∴∠EAD=30°,
∴A,B,E三点共线,
∴AE=2DE=6,
∴,
设M(m,0),N(0,n),
∵四边形EFMN是平行四边形,
∴,
解得:,
∴M(,0),N(0,).
本题考查的是一次函数综合运用,涉及到正方形和等腰三角形性质、圆的基本知识,其中(2),要注意分类求解,避免遗漏.
26、(1)捐款人数共有 78人;(2)众数为 25(元);中位数为 25(元),(3)全校共捐款34200元
【解析】
(1)各长方形的高度之比为3:4:5:8:6,就是已知捐款人数的比是3:4:5:8:6,求一共调查多少人可以根据捐款25元和30元的学生一共42人.就可以求出调查的总人数;
(2)众数就是出现次数最多的数,中位数就是按大小顺序排列处于中间位置的两个数的平均数;
(3)估计全校学生捐款数,就可以先求出这些人的学生的平均捐款数,可以近似等于全校学生的平均捐款数.
【详解】
解:(1)设捐款 30 元的有 6 x 人,则 8 x +6x=42,得 x=3。则捐款人数共有 3 x+4 x+5 x+8 x+6 x=78(人);
(2)由图象可知:众数为 25(元);
由于本组数据的个数为 78,按大小顺序排列处于中间位置的两个数都是 25(元),
故中位数为 25(元);
(3)全校共捐款(9×10+12×15+15×20+24×25+18×30)×=34200(元).
故答案为:(1)捐款人数共有 78人;(2)众数为 25(元);中位数为 25(元);(3)全校共捐款34200元.
本题考查平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位.并且本题考查了总体与样本的关系,可以用样本估计总体.
题号
一
二
三
四
五
总分
得分
2024-2025学年辽宁省沈阳市名校数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年辽宁省沈阳市名校数学九上开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省洪泽县数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年江苏省洪泽县数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖州市吴兴区九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年湖州市吴兴区九上数学开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。