辽宁省朝阳市第一中学2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如果一组数据-3,x,0,1,x,6,9,5的平均数为5,则x为( )
A.22B.11C.8D.5
2、(4分)为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是( )
A.∠BCA=45°B.AC=BD
C.BD的长度变小D.AC⊥BD
3、(4分)点M(-2,3)关于x轴对称点的坐标为
A. (-2,-3) B. (2,-3) C. (-3,-2) D. (2,3)
4、(4分)下列事件中,属于必然事件的是()
A.经过路口,恰好遇到红灯;B.四个人分成三组,三组中有一组必有2人;
C.打开电视,正在播放动画片;D.抛一枚硬币,正面朝上;
5、(4分)如图,函数的图象所在坐标系的原点是( )
A.点B.点C.点D.点
6、(4分)八年级(6)班一同学感冒发烧住院洽疗,护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是( )
A.列表法B.图象法
C.解析式法D.以上三种方法均可
7、(4分)下列说法正确的是( )
A.对应边都成比例的多边形相似B.对应角都相等的多边形相似
C.边数相同的正多边形相似D.矩形都相似
8、(4分)小明到单位附近的加油站加油,如图是小明所用的加油机上的数据显示牌,则数据中的变量有( )
A.金额B.数量C.单价D.金额和数量
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在Rt△ABC中,∠C=90°,∠A=30°,BC=2,D,E分别是AC,BC的中点,则DE的长等于_____.
10、(4分)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=_____.
11、(4分)如图,平分,,,则______.
12、(4分)已知一个直角三角形的两边长分别为12和5,则第三条边的长度为_______
13、(4分) “6l8购物节”前,天猫某品牌服装旗舰店采购了一大批服装,已知每套服装进价为240元,出售时标价为360元,为了避免滞销库存,商店准备打折销售,但要保持利润不低于20%,那么至多可打_________折
三、解答题(本大题共5个小题,共48分)
14、(12分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图,已知整点A(1,6),请在所给网格区域(含边界)上按要求画整点四边形.
(1)在图1中画一个整点四边形ABCD,四边形是轴对称图形,且面积为10;
(2)在图2中画一个整点四边形ABCD,四边形是中心对称图形,且有两个顶点各自的横坐标比纵坐标小1.
15、(8分)如图,已知一次函数y=﹣x+b的图象过点A(0,3),点p是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON上分别截取:PC=MP,MB=OM,OE=ON,ND=NP.
(1)b= ;
(2)求证:四边形BCDE是平行四边形;
(3)在直线y=﹣x+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,请求出所有符合的点P的坐标;若不存在,请说明理由.
16、(8分)计算:(1)
(2)已知,试求以a、b、c为三边的三角形的面积.
17、(10分)二次根式计算:
(1);
(2);
(3)()÷;
(4).
18、(10分)解答下列各题:
(1)计算:;
(2)当时,求代数式的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知y+2和x成正比例,当x=2时,y=4,则y与x的函数关系式是______________.
20、(4分)①_________;②_________;③_________.
21、(4分)已知的顶点坐标分别是,,.过点的直线与相交于点.若分的面积比为,则点的坐标为________.
22、(4分)若点和点都在一次函数的图象上,则________(选择“”、“”、“”填空).
23、(4分)如图在△ABC中,AH⊥BC于点H,在AH上取一点D,连接DC,使DA=DC,且∠ADC=2∠DBC,若DH=2,BC=6,则AB=_________________。
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,甲、乙两船从港口A同时出发,甲船以30海里/时的速度向北偏东35°的方向航行,乙船以40海里/时的速度向另一方向航行,2小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距100海里,则乙船航行的方向是南偏东多少度?
25、(10分)计算:
(1);
(2)已知,,求的值.
26、(12分)如图,△ABC中,∠A=60°,∠C=40°,DE垂直平分BC,连接BD.
(1)尺规作图:过点D作AB的垂线,垂足为F.(保留作图痕迹,不写作法)
(2)求证:点D到BA,BC的距离相等.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据算术平均数的计算方法列方程求解即可.
【详解】
由平均数的计算公式得:(-3+x+0+1+x+6+9+5)=5
解得:x=11,
故选:B.
考查算术平均数的计算方法,利用方程求解,熟记计算公式是解决问题的前提,是比较基础的题目.
2、B
【解析】
根据矩形的性质即可判断;
【详解】
解:∵四边形ABCD是平行四边形,
又∵AB⊥BC,
∴∠ABC=90°,
∴四边形ABCD是矩形,
∴AC=BD.
故选B.
本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
3、A
【解析】两点关于x轴对称,那么让横坐标不变,纵坐标互为相反数即可.
解:∵3的相反数是-3,
∴点M(-2,3)关于x轴对称点的坐标为 (-2,-3),
故答案为A
点评:考查两点关于x轴对称的坐标的特点:横坐标不变,纵坐标互为相反数
4、B
【解析】
分析:必然事件就是一定能发生的事件,根据定义即可作出判断.
详解:A、经过路口,恰好遇到红灯是随机事件,选项错误;
B、4个人分成三组,其中一组必有2人,是必然事件,选项正确;
C、打开电视,正在播放动画片是随机事件,选项错误;
D、抛一枚硬币,正面朝上是随机事件,选项错误.
故选B.
点睛:本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
5、A
【解析】
由函数解析式可知函数关于y轴对称,当x>0时,图象在一象限,当x<0时,图象在二象限,即可求解.
【详解】
由已知可知函数y关于y轴对称,∴y轴与直线PM重合.当x>0时,图象在一象限,当x<0时,图象在二象限,即图象在x轴上方,所以点M是原点.
故选A.
本题考查了反比例函数的图象及性质;熟练掌握函数的解析式与函数图象的关系是解题的关键.
6、B
【解析】
列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.
【详解】
解:护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是图象法,有利于判断体温的变化情况,
故选:B.
本题主要考查了函数的表示方法,图象法直观地反映函数值随自变量的变化而变化的规律.
7、C
【解析】
试题分析:根据相似图形的定义,对选项一一分析,排除错误答案.
解:A、对应边都成比例的多边形,属于形状不唯一确定的图形,故错误;
B、对应角都相等的多边形,属于形状不唯一确定的图形,故错误;
C、边数相同的正多边形,形状相同,但大小不一定相同,故正确;
D、矩形属于形状不唯一确定的图形,故错误.
故选C.
考点:相似图形.
点评:本题考查相似变换的定义,即图形的形状相同,但大小不一定相同的是相似形.
8、D
【解析】
根据常量与变量的定义即可判断.
【详解】
常量是固定不变的量,变量是变化的量,
单价是不变的量,而金额是随着数量的变化而变化,
故选:D.
本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据直角三角形的性质及三角形的中位线即可求解.
【详解】
解:∵∠C=90°,∠A=30°,
∴AB=1BC=4,
∵D,E分别是AC,BC的中点,
∴DE=AB=1,
故答案为:1.
此题主要考查三角形的中位线,解题的关键是熟知含30°的直角三角形的性质.
10、25°.
【解析】
在Rt△ABC中,∠BAC=65°,所以∠ABC=90°-65°=25°.又AB∥CD,所以∠BCD=∠ABC=25°.
11、50
【解析】
由平分,可求出∠BDE的度数,根据平行线的性质可得∠ABD=∠BDE.
【详解】
解:∵,
∴∠ADE=180°-80°=100°,
∵平分,
∴∠BDE=∠ADE=50°,
∵,
∴∠ABD=∠BDE=50°.
故答案为:50.
本题考查平行线的性质与角平分线的定义.此题比较简单,解题的关键是注意掌握两直线平行,内错角相等定理的应用,注意数形结合思想的应用.
12、13或;
【解析】
第三条边的长度为
13、八.
【解析】
设打了x折,用售价×折扣-进价得出利润,根据利润率不低于20%,列不等式求解.
【详解】
解:设打了x折,
由题意得360×0.1x-240≥240×20%,
解得:x≥1.
则要保持利润不低于20%,至多打1折.
故答案为:八.
本题考查一元一次不等式的应用,解题的关键是读懂题意,求出打折之后的利润,根据利润率不低于20%,列不等式求解.
三、解答题(本大题共5个小题,共48分)
14、画图见解析.
【解析】
【分析】(1)结合网格特点以及轴对称图形有定义进行作图即可得;
(2)结合网格特点以及中心对称图形的定义按要求作图即可得.
【详解】(1)如图所示(答案不唯一);
(2)如图所示(答案不唯一).
【点睛】本题考查了作图,轴对称图形、中心对称图形等,熟知网格特点以及轴对称图形、中心对称图形的定义是解题的关键.
15、(1)1;(2)证明见解析;(1)在直线y=﹣x+b上存在这样的点P,使四边形BCDE为正方形,P点坐标是(2,2)或(﹣6,6).
【解析】
分析:(1)根据待定系数法,可得b的值;(2)根据矩形的判定与性质,可得PM与ON,PN与OM的关系,根据PC=MP,MB=OM,OE=ON,NO=NP,可得PC与OE,CM与NE,BM与ND,OB与PD的关系,根据全等三角形的判定与性质,可得BE与CD,BC与DE的关系,根据平行四边形的判定,可得答案;(1)根据正方形的判定与性质,可得BE与BC的关系,∠CBM与∠EBO的关系,根据全等三角形的判定与性质,可得OE与BM的关系,可得P点坐标间的关系,可得答案.
本题解析:
(1)一次函数y=﹣x+b的图象过点A(0,1),
1=﹣×0+b,解得b=1.
故答案为:1;
(2)证明:过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,
∴∠M=∠N=∠O=90°,
∴四边形PMON是矩形,
∴PM=ON,OM=PN,∠M=∠O=∠N=∠P=90°.
∵PC=MP,MB=OM,OE=ON,NO=NP,
∴PC=OE,CM=NE,ND=BM,PD=OB,
在△OBE和△PDC中,
,
∴△OBE≌△PDC(SAS),
BE=DC.
在△MBC和△NDE中,
,
∴△MBC≌△NDE(SAS),
DE=BC.
∵BE=DC,DE=BC,
∴四边形BCDE是平行四边形;
(1)设P点坐标(x,y),
当△OBE≌△MCB时,四边形BCDE为正方形,
OE=BM,
当点P在第一象限时,即y=x,x=y.
P点在直线上,
,
解得,
当点P在第二象限时,﹣x=y
,
解得
在直线y=﹣x+b上存在这样的点P,使四边形BCDE为正方形,P点坐标是(2,2)或(﹣6,6).
点睛:本题考查了一次函数的综合题,利用了全等三角形的判定与性质,平行四边形的判定与性质,正方形的性质,注意数形结合.
16、(1);(2)以a、b、c为三边的三角形的面积为1.
【解析】
(1)先根据二次根式的乘除法则和完全平方公式计算,然后化简后合并即可;
(2)利用非负数的性质得到a−1=0,b−2=0,c−=0,解得a=1,b=2,c=,利用勾股定理的逆定理得到以a、b、c为三边的三角形为直角三角形,其中c为斜边,然后根据三角形面积公式计算.
【详解】
解:(1)原式;
(2)由题意得:,
,,,
,,,
,,
∴以a、b、c为三边的三角形是直角三角形.
∴它的面积是.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了勾股定理的逆定理.
17、(1)8;(2);(3);(4)1.
【解析】
(1)首先化简二次根式,进而利用二次根式加减运算法则得出答案;
(2)首先化简二次根式,进而利用二次根式加减运算法则得出答案;
(3)首先化简二次根式,进而利用二次根式除法运算法则得出答案;
(4)直接利用平方差公式计算得出答案.
【详解】
(1)=3+5=8;
(2),
=,
=;
(3)()÷
=
=;
(4),
=,
=12﹣1,
=1.
此题考查二次根式的加减法计算,混合运算,乘法公式,将每个二次根式正确化简成最简二次根式,再根据运算法则进行计算.
18、(1)(2)1.
【解析】
(1)根据实数的运算法则即可化简;
(2)根据整式的运算法则进行化简即可求解.
【详解】
解:(1)原式.
(2)原式,将代入得
此题主要考查实数的运算,解题的关键是熟知实数的运算法则与整式的运算.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y=3x-1
【解析】
解:设函数解析式为y+1=kx,
∴1k=4+1,
解得:k=3,
∴y+1=3x,
即y=3x-1.
20、①, ②, ③.
【解析】
①根据二次根式的性质化简即可解答
②根据立方根的性质计算即可解答
③根据积的乘方,同底数幂的除法,进行计算即可解答
【详解】
①=
②=-3
③=4x =4x
此题考查二次根式的性质,同底数幂的除法,解题关键在于掌握运算法则
21、(5,-)或(5,-).
【解析】
由AE分△ABC的面积比为1:2,可得出BE:CE=1:2或BE:CE=2:1,由点B,C的坐标可得出线段BC的长度,再由BE:CE=1:2或BE:CE=2:1结合点B的坐标可得出点E的坐标,此题得解.
【详解】
∵AE分△ABC的面积比为1:2,点E在线段BC上,
∴BE:CE=1:2或BE:CE=2:1.
∵B(5,1),C(5,-6),
∴BC=1-(-6)=2.
当BE:CE=1:2时,点E的坐标为(5,1-×2),即(5,-);
当BE:CE=2:1时,点E的坐标为(5,1-×2),即(5,-).
故答案为:(5,-)或(5,-).
本题考查了比例的性质以及三角形的面积,由三角形的面积比找出BE:CE的比值是解题的关键.
22、
【解析】
可以分别将x=1和x=2代入函数算出的值,再进行比较;或者根据函数的增减性,判断函数y随x的变化规律也可以得出答案.
【详解】
解:∵一次函数
∴y随x增大而减小
∵1<2
∴
故答案为:
本题考查一次函数的增减性,熟练掌握一次函数增减性的判断是解题关键.
23、
【解析】
如图,过点B作BE∥DH,并在BE上取BE=2DH,连接ED,EC.并取BE的中点K,连接DK,根据垂直的定义得到∠DHC=90°,由平行线的性质得到∠EBC=90°.由线段垂直平分线的性质得到BK=DH.推出四边形DKBH为矩形,得到DK⊥BE,根据等腰三角形的性质得到DE=DB,∠EDB=2∠KDB,通过△EDC≌△BDA,得到AB=CE,根据勾股定理得到,于是得到结论.
【详解】
解:如图,过点B作BE∥DH,并在BE上取BE=2DH,连接ED,EC.并取BE的中点K,连接DK,
∵DH⊥BC于H,
∴∠DHC=90°,
∵BE∥DH,
∴∠EBC=90°,
∵∠EBC=90°,
∵K为BE的中点,BE=2DH,
∴BK=DH.
∵BK∥DH,
∴四边形DKBH为矩形,DK∥BH,
∴DK⊥BE,∠KDB=∠DBC,
∴DE=DB,∠EDB=2∠KDB,
∵∠ADC=2∠DBC,
∴∠EDB=∠ADC,
∴∠EDB+∠EDA=∠ADC+∠EDA,即∠EDC=∠BDA,
在△EDC、△BDA中,
,
∴△EDC≌△BDA,
∴AB=CE,
∴,
∴AB=.
本题考查了全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的判定与性质,矩形的判定与性质,勾股定理的运用.关键是根据已知条件构造全等三角形.
二、解答题(本大题共3个小题,共30分)
24、乙船航行的方向为南偏东55°.
【解析】
试题分析:
由题意可知:在△ABC中,AC=60,AB=80,BC=100,由此可由“勾股定理逆定理”证得∠BAC=90°,结合∠EAD=180°和∠EAC=35°即可求得∠DAB的度数,从而得到乙船的航行方向.
试题解析:
由题意可知,在△ABC中,AC=30×2=60,AB=40×2=80,BC=100,
∴AC2=3600,AB2=6400,BC2=10000,
∴AC2+AB2=BC2,
∴∠CAB=90°,
又∵∠EAD=180°,∠EAC=35°,
∴∠DAB=90°-∠CAE=90°-35°=55°,
∴乙船航行的方向为南偏东55°.
点睛:本题的解题要点是:在△ABC中,由已知条件先求得AC和AB的长,再结合AC=100,即可用“勾股定理的逆定理”证得∠BAC=90°,这样即可求出∠DAB的度数,从而使问题得到解决.
25、 (1);(2)15.
【解析】
(1)根据二次根式性质化简后合并求解即可;
(2)先对变形得,先分别求出,,代入即可.
【详解】
解:(1)原式
;
(2)变形得,
根据题意,,
代入得:.
本题考查了二次根式,熟练进行分母有理化是解题的关键.
26、(1)如图所示,DF即为所求,见解析;(2)见解析.
【解析】
(1)直接利用过一点作已知直线的垂线作法得出符合题意的图形;
(2)根据角平分线的性质解答即可.
【详解】
(1)如图所示,DF即为所求:
(2)∵△ABC中,∠A=60°,∠C=40°,
∴∠ABC=80°,
∵DE垂直平分BC,
∴BD=DC,
∴∠DBC=∠C=40°,
∴∠ABD=∠DBC=40°,
即BD是∠ABC的平分线,
∵DF⊥AB,DE⊥BC,
∴DF=DE,
即点D到BA,BC的距离相等.
此题主要考查了复杂作图,正确利用角平分线的性质解答是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
湖南省2024-2025学年九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份湖南省2024-2025学年九年级数学第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
固原市重点中学2024-2025学年九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份固原市重点中学2024-2025学年九年级数学第一学期开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
北京东城二中学2024-2025学年九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份北京东城二中学2024-2025学年九年级数学第一学期开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。