辽宁省营口市2024年九年级数学第一学期开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为( )
A.36°B.18°C.27°D.9°
2、(4分)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:
①一次购买种子数量不超过l0千克时,销售价格为5元/千克;
②一次购买30千克种子时,付款金额为100元;
③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:
④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.
其中正确的个数是
A.1个B.2个C.3个D.4个
3、(4分)下列曲线中不能表示是的函数的是
A.B.
C.D.
4、(4分)如图,正方形的边长为4,点是对角线的中点,点、分别在、边上运动,且保持,连接,,.在此运动过程中,下列结论:①;②;③四边形的面积保持不变;④当时,,其中正确的结论是( )
A.①②B.②③C.①②④D.①②③④
5、(4分)要使分式有意义,则x的取值范围是( )
A.x>1B.x≠1C.x<1D.x≠-1.
6、(4分)-个多边形的内角和等于它的外角和的两倍,则这个多边形的边数为( )
A.6B.7C.8D.9
7、(4分)如图,矩形中,,,、分别是边、上的点,且与之间的距离为4,则的长为( )
A.3B.C.D.
8、(4分)如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=3cm,那么平行线a,b之间的距离为( )
A.5cmB.4cmC.3cmD.不能确定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知点与点关于y轴对称,则__________.
10、(4分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.
11、(4分)若二次根式有意义,则的取值范围是______.
12、(4分)如图,在矩形中,的平分线交于点, 于点,连接并延长交于点,连接交于点,下列结论:
①;②;③;④;⑤,
其中正确的有__________(只填序号).
13、(4分)菱形两对角线长分别为24和10,则这个菱形的面积是________,菱形的高为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)我市为加强学生的安全意识,组织了全市学生参加安全知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示,请根据图表信息解答以下问题。
(1)一共抽取了___个参赛学生的成绩;表中a=___;
(2)补全频数分布直方图;
(3)计算扇形统计图中“B”对应的圆心角度数;
(4)某校共2000人,安全意识不强的学生(指成绩在70分以下)估计有多少人?
15、(8分)计算下列各式的值:
(1);
(2)(1﹣)2﹣|﹣2|.
16、(8分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.
(1)求反比例函数的解析式;
(2)求一次函数的解析式;
(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
17、(10分)如图,菱形的对角线、相交于点,过点作且,连接、,连接交于点.
(1)求证:;
(2)若菱形的边长为2, .求的长.
18、(10分)如图,在▱ABCD 中,对角线 AC,BD 相交于点 O,过点 O 的一条直线分别交 AD,BC 于点 E,F.求证:AE=CF.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知点是直线上的一个动点,若点到两坐标轴的距离相等,则点的坐标是__________.
20、(4分)王玲和李凯进行投球比赛,每人连投12次,投中一次记2分,投空一次记1分,王玲先投,投得16分,李凯要想超过王玲,应至少投中________次.
21、(4分)已知y+1与x成正比例,则y是x的_____函数.
22、(4分)若a4·ay=a19,则 y=_____________.
23、(4分)如果多边形的每个外角都是40°,那么这个多边形的边数是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知直线与x轴交于点,与y轴交于点,把直线沿x轴的负方向平移6个单位得到直线,直线与x轴交于点C,与y轴交于点D,连接BC.
如图,分别求出直线和的函数解析式;
如果点P是第一象限内直线上一点,当四边形DCBP是平行四边形时,求点P的坐标;
如图,如果点E是线段OC的中点,,交直线于点F,在y轴的正半轴上能否找到一点M,使是等腰三角形?如果能,请求出所有符合条件的点M的坐标;如果不能,请说明理由.
25、(10分)已知如图,在▱ABCD中,E为CD的中点,连接AE并延长,与BC的延长线相交于点F.
求证:AE=FE.
26、(12分)如图,已知矩形ABCD的边长AB=3cm,BC=6cm,某一时刻,动点M从点A出发沿AB方向以1cm/s的速度向点B匀速运动;同时,动点N从点D沿DA方向以2cm/s的速度向点A匀速运动.
(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?
(2)是否存在时刻t,使A、M、N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题解析:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,
又因为DE⊥AC,所以∠DCE=90°-36°=54°,
根据矩形的性质可得∠DOC=180°-2×54°=72°
所以∠BDE=180°-∠DOC-∠DEO=18°
故选B.
2、D
【解析】
①由图可知,购买10千克种子需要50元,由此求出一次购买种子数量不超过10千克时的销售价格;
②由图可知,超过10千克以后,超过的那部分种子的单价降低,而由购买50千克比购买10千克种子多付100元,求出超过10千克以后,超过的那部分种子的单价,再计算出一次购买30千克种子时的付款金额;
③根据一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以可以求出打的折数;
④先求出一次购买40千克种子的付款金额为125元,再求出分两次购买且每次购买20千克种子的付款金额为150元,然后用150减去125,即可求出一次购买40千克种子比分两次购买且每次购买20千克种子少花的钱数.
解:①由图可知,一次购买种子数量不超过10千克时,销售价格为:50÷10=5元/千克,正确;
②由图可知,超过10千克的那部分种子的价格为:(150-50)÷(50-10)=2.5元/千克,所以,一次购买30千克种子时,付款金额为:50+2.5×(30-10)=100元,正确;
③由于一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以打五折,正确;
④由于一次购买40千克种子需要:50+2.5×(40-10)=125元,
分两次购买且每次购买20千克种子需要:2×[50+2.5×(20-10)]=150元,
而150-125=25元,
所以一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱,正确.
故选D.
3、D
【解析】
根据函数的定义即可判断.
【详解】
因为是的函数时,只能一个x对应一个y值,故D错误.
此题主要考查函数的定义,解题的关键是熟知函数图像的性质.
4、D
【解析】
过O作于G,于,由正方形的性质得到,求得,,得到,根据全等三角形的性质得到,故①正确;,推出,故②正确;得到四边形的面积正方形的面积,四边形的面积保持不变;故③正确;根据平行线的性质得到
,,求得,得到,于是得到,故④正确.
【详解】
解:过O作于G,于H,
∵四边形是正方形,
,
,,
∵点O是对角线BD的中点,
,,
,,
,
,,
∴四边形是正方形,
,
,
,
在与中,
,
,
,故①正确;,
,
,故②正确;
,
∴四边形的面积正方形的面积,
∴四边形的面积保持不变;故③正确;
,
,,
,
,
,
,
,故④正确;
故选:.
本题考查了正方形的性质,全等三角形的判定和性质,平行线的性质,熟练掌握正方形的性质是解题的关键.
5、B
【解析】
根据分式有意义的条件即可解答.
【详解】
根据题意可知,x-1≠0,即x≠1.
故选B.
本题考查了分式有意义的条件,熟知分式有意义,分母不为0是解决问题的关键.
6、A
【解析】
根据题意得(n-2)•180=720,
解得:n=6,
故选A.
7、D
【解析】
过点D作DG⊥BE,垂足为G,则GD=4=AB,∠G=90°,再利用AAS证明△AEB≌△GED,根据全等三角形的性质可得AE=EG. 设AE=EG=x,则ED=5﹣x,在Rt△DEG中,由勾股定理得可得方程x2+42=(5﹣x)2, 解方程求得x的值即可得AE的长.
【详解】
过点D作DG⊥BE,垂足为G,如图所示:
则GD=4=AB,∠G=90°,
∵四边形ABCD是矩形,
∴AD=BC=5,∠A=90°=∠G,
在△AEB和△GED中,
∴△AEB≌△GED(AAS).
∴AE=EG.
设AE=EG=x,则ED=5﹣x,
在Rt△DEG中,由勾股定理得:ED2=EG2+GD2,
∴x2+42=(5﹣x)2,
解得:x=,即AE=.
故选D.
本题考查了矩形的性质、全等三角形的判定与性质及勾股定理,正确作出辅助线,证明AE=EG是解决问题的关键.
8、B
【解析】
从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,并由勾股定理可得出答案.
【详解】
解:∵AC⊥b,
∴△ABC是直角三角形,
∵AB=5cm,BC=3cm,
∴AC===4(cm),
∴平行线a、b之间的距离是:AC=4cm.
故选:B.
本题考查了平行线之间的距离,以及勾股定理,关键是掌握平行线之间距离的定义,以及勾股定理的运用.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后相加即可得解.
【详解】
∵点P(a,−4)与点Q(−3,b)关于y轴对称,
∴a=3,b=−4,
∴a+b=3+(−4)=−1.
故答案为:−1.
考查关于y轴对称的点的坐标特征:纵坐标不变,横坐标互为相反数.
10、
【解析】
先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.
【详解】
如图,过点A作AF⊥BC于F,
在Rt△ABC中,∠B=45°,
∴BC=AB=2,BF=AF=AB=1,
∵两个同样大小的含45°角的三角尺,
∴AD=BC=2,
在Rt△ADF中,根据勾股定理得,DF==
∴CD=BF+DF-BC=1+-2=-1,
故答案为-1.
此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.
11、
【解析】
根据二次根式有意义的条件即可求解.
【详解】
依题意得a+1≥0,解得
故填:
此题主要考查二次根式的定义,解题的关键是熟知被开方数为非负数.
12、①②③④
【解析】
①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE-AH=BC-CD,BC-CF =BC-(CD-DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.
【详解】
∵在矩形ABCD中,AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∴△ABE是等腰直角三角形,
∴AE=AB,
∵AD=AB,
∴AE=AD,
在△ABE和△AHD中,
∵∠BAE=∠DAE,
∠ABE=∠AHD=90°,
AE=AD,
∴△ABE≌△AHD(AAS),
∴BE=DH,
∴AB=BE=AH=HD,
∴∠ADE=∠AED=(180°-45°)=67.5°,
∴∠CED=180°-45°-67.5°=67.5°,
∴∠AED=∠CED,故①正确;
∵AB=AH,
∵∠AHB=(180°-45°)=67.5°,∠OHE=∠AHB(对顶角相等),
∴∠OHE=67.5°=∠AED,
∴OE=OH,
∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,
∴∠DHO=∠ODH,
∴OH=OD,
∴OE=OD=OH,故②正确;
∵∠EBH=90°-67.5°=22.5°,
∴∠EBH=∠OHD,
在△BEH和△HDF中,
∵∠EBH=∠OHD=22.5°,
BE=DH,
∠AEB=∠HDF=45°,
∴△BEH≌△HDF(ASA),
∴BH=HF,HE=DF,故③正确;
∵HE=AE-AH=BC-CD,
∴BC-CF=BC-(CD-DF)=BC-(CD-HE)
=(BC-CD)+HE=HE+HE=2HE.故④正确;
∵AB=AH,∠BAE=45°,
∴△ABH不是等边三角形,
∴AB≠BH,
∴即AB≠HF,故⑤错误;
综上所述,结论正确的是①②③④.
故答案为:①②③④.
本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.
13、110cm1,cm.
【解析】
试题分析:已知两对角线长分别为14cm和10cm,利用勾股定理可得到菱形的边长=13cm,根据菱形面积==两条对角线的乘积的一半可得菱形面积=×14×10=110cm1.又因菱形面积=底×高,即高=菱形面积÷底=cm.
考点:菱形的性质;勾股定理.
三、解答题(本大题共5个小题,共48分)
14、(1)40,6;(2)见解析;(3)72°;(4)300.
【解析】
(1)利用总人数与个体之间的关系解决问题即可.
(2)根据频数分布表画出条形图即可解决问题.
(3)利用圆心角=360°×百分比计算即可解决问题.
(4)根据成绩在70分以下的百分比乘以总人数即可.
【详解】
(1)抽取的学生成绩有14÷35%=40(个),
则a=40−(8+12+14)=6,
故答案为:40,6;
(2)直方图如图所示:
(3)扇形统计图中“B”的圆心角=360°× =72°.
(4) 成绩在70分以下: =300(人).
此题考查频数分布直方图,扇形统计图,解题关键在于看懂图中数据.
15、(1)(2)2-
【解析】
(1)根据二次根式的乘除法进行计算即可得到答案;
(2)先根据平方差公式和绝对值分别化简,再进行计算即可得到答案.
【详解】
(1);
(2)(1﹣)2﹣|﹣2|=1﹣2+3﹣(2-)=4﹣2﹣2+=2-.
本题考查二次根式的乘除法、平方差公式和绝对值,解题的关键是掌握二次根式的乘除法、平方差公式和绝对值.
16、(1);(2);(3)P(,0).
【解析】
(1)把A的坐标代入即可求出结果;
(2)先把B的坐标代入得到B(4,1),把A和B的坐标,代入即可求得一次函数的解析式;
(3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,求出直线AB′与x轴的交点即为P点的坐标.
【详解】
(1)把A(1,4)代入得:m=4,
∴反比例函数的解析式为:;
(2)把B(4,n)代入得:n=1,∴B(4,1),把A(1,4),B(4,1)代入,得:,
∴,
∴一次函数的解析式为:;
(3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,由作图知,B′(4,﹣1),
∴直线AB′的解析式为:,当y=0时,x=,
∴P(,0).
17、(1)证明见解析(1)
【解析】
试题分析:(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,可得OE=CD即可;
(1)根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
(1)证明:在菱形ABCD中,OC=AC.
∴DE=OC.
∵DE∥AC,
∴四边形OCED是平行四边形.
∵AC⊥BD,
∴平行四边形OCED是矩形.
∴OE=CD.
(1)在菱形ABCD中,∠ABC=60°,
∴AC=AB=1.
∴在矩形OCED中,
CE=OD=.
在Rt△ACE中,
AE=.
点睛:本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.
18、证明见解析.
【解析】
利用平行四边形的性质得出 AO=CO,AD∥BC,进而得出∠EAC=∠FCO, 再利用 ASA 求出△AOE≌△COF,即可得出答案.
【详解】
∵▱ABCD 的对角线 AC,BD 交于点 O,
∴AO=CO,AD∥BC,
∴∠EAC=∠FCO,
在△AOE 和△COF 中,
∴△AOE≌△COF(ASA),
∴AE=CF.
本题考查了全等三角形的判定与性质以及平行四边形的性质,熟练掌握全等三角形的判定方法是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、 或
【解析】
到两坐标轴距离相等,说明此点的横纵坐标的绝对值相等,那么x=y,或x=-y.据此作答.
【详解】
设 (x,y).
∵点为直线y=−2x+4上的一点,
∴y=−2x+4.
又∵点到两坐标轴距离相等,
∴x=y或x=−y.
当x=y时,解得x=y=,
当x=−y时,解得y=−4,x=4.
故点坐标为 或
故答案为: 或
考查一次函数图象上点的坐标特征,根据点到两坐标轴的距离相等,列出方程求解即可.
20、1
【解析】
根据题意,可以列出相应的不等式,本题得以解决,注意问题中是李凯超过王玲.
【详解】
解:设李凯投中x个球,总分大于16分,则
2x+(12-x)×1>16,
解得,x>4,
∴李凯要想超过王玲,应至少投中1次,
故答案为:1.
本题考查一元一次不等式的应用,解答本题的关键是明确题意,列出相应的不等式,利用不等式的性质解答.
21、一次
【解析】
将y+1看做一个整体,根据正比例函数的定义列出解析式解答即可.
【详解】
y+1与x成正比例,
则y+1=kx,
即y=kx-1,
符合一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1,则y是x的一次函数.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.
22、1
【解析】
利用同底数幂相乘,底数不变指数相加计算,再根据指数相同列式求解即可.
【详解】
解: a4•ay=a4+y=a19,∴4+y=19,解得y=1
故答案为:1.
本题主要考查同底数幂相乘,底数不变指数相加的性质,熟练掌握性质是解题的关键.
23、1
【解析】
根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.
【详解】
解:多边形的边数是: =1,
故答案为:1.
此题考查多边形内角(和)与外角(和),解题关键在于掌握运算公式
二、解答题(本大题共3个小题,共30分)
24、(1);;(2);(3)M 点坐标为,,,.
【解析】
用待定系数法可求直线的解析式,平移可得直线的解析式
由四边形DCBP是平行四边形,可得,,根据两点公式可求P的坐标.
分,,三种情况讨论,根据勾股定理可求M的坐标.
【详解】
设直线的解析式为,
且过,,
,
解得:,,
解析式,
把直线沿x轴的负方向平移6个单位得到直线,
直线的解析式;
设,
直线与y轴交于D点,交x轴于C点,
,,
,,
,
四边形DCBP是平行四边形,
,,
,
,不合题意舍去,
;
点E是线段OC的中点,,
,
,
,
,,
在中,,
,,
,
当点M与 点O重合时,即F ,
当时,是等腰三角形,
当时,则,
或,
当时,设M ,
,
,
,
综上所述:M 点坐标为,,,.
本题考查了四边形的综合题,待定系数法求一次函数解析式,平行四边形的性质,等腰三角形的性质,利用分类思想解决问题是本题的关键.
25、见解析
【解析】
由已知条件易得AD∥BC,由此可得∠D=∠FCE,结合DE=CE,∠AED=∠FEC,即可证得△ADE≌△FCE,由此即可得到AE=FE.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠D=∠FCE,
∵点E是CD的中点,
∴DE=CE,
∵∠AED=∠FEC,
∴△ADE≌△FCE,
∴AE=FE.
熟悉平行四边形的性质和全等三角形的判定与性质”是解答本题的关键.
26、(1)1秒或2秒,(2)存在,秒或秒
【解析】
试题分析:(1)设经过秒后,根据的面积等于矩形面积的,得出方程解方程即可;(2)假设经过秒时,以为顶点的三角形与相似,分两种情况讨论,然后利用相似三角形的对应边成比例得出方程,解方程即可.
试题解析:(1)设经过秒后,的面积等于矩形面积的,
则有:,即,
解方程,得.
经检验,可知符合题意,所以经过1秒或2秒后,的面积等于矩形面积的.
(2)假设经过秒时,以为顶点的三角形与相似,
由矩形,可得,
因此有或
即①,或②.
解①,得;解②,得
经检验,或都符合题意,所以动点同时出发后,经过秒或秒时,以为顶点的三角形与相似
考点:1.矩形的性质2.相似三角形的判定与性质.
题号
一
二
三
四
五
总分
得分
批阅人
辽宁省盘锦地区2025届九年级数学第一学期开学达标检测试题【含答案】: 这是一份辽宁省盘锦地区2025届九年级数学第一学期开学达标检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
辽宁省丹东市第七中学2025届九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份辽宁省丹东市第七中学2025届九年级数学第一学期开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
辽宁省朝阳市第一中学2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份辽宁省朝阳市第一中学2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。