江西省赣州于都思源实验学校2024年九年级数学第一学期开学达标测试试题【含答案】
展开
这是一份江西省赣州于都思源实验学校2024年九年级数学第一学期开学达标测试试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若解方程会产生增根,则m等于( )
A.-10B.-10或-3C.-3D.-10或-4
2、(4分)已知某一次函数的图象与直线平行,且过点(3, 7),那么此一次函数为( )
A.B.C.D.
3、(4分)要使函数y=(m﹣2)xn﹣1+n是一次函数,应满足( )
A.m≠2,n≠2B.m=2,n=2C.m≠2,n=2D.m=2,n=0
4、(4分)已知直线y=mx+n(m,n为常数)经过点(0,﹣2)和(3,0),则关于x的方程mx+n=0的解为( )
A.x=0B.x=1C.x=﹣2D.x=3
5、(4分)以下运算错误的是( )
A.B.
C.D.
6、(4分)如图,菱形ABCD的周长为24,对角线AC、BD交于点O,∠DAB=60°,作DH⊥AB于点H,连接OH,则OH的长为( )
A.2B.3C.D.
7、(4分)若关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是( )
A.k>1B.k<1C.k>1且k≠0D.k<1且k≠0
8、(4分)下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()
A.18cm2B.36cm2C.72cm2D.108cm2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)反比例函数的图象过点P(2,6),那么k的值是 .
10、(4分)一组数据3、4、5、5、6、7的方差是 .
11、(4分)如图,在△ABC中,AB=3cm,BC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于_______cm.
12、(4分)若已知方程组的解是,则直线y=-kx+b与直线y=x-a的交点坐标是________。
13、(4分)如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,要在长、宽分别为50米、40米的矩形草坪内建一个正方形的观赏亭.为方便行人,分别从东,南,西,北四个方向修四条宽度相同的矩形小路与亭子相连,若小路的宽是正方形观赏亭边长的,小路与观赏亭的面积之和占草坪面积的,求小路的宽.
15、(8分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.
(1)概念理解
在“平行四边形、菱形、矩形、正方形”中是“等邻边四边形”的是 .
(2)概念应用
在Rt△ABC中,∠C=,AB=5,AC=3.点D是AB边的中点,点E是BC边上的一个动点,若四边形ADEC是“等邻边四边形”,则CE= .
16、(8分)解不等式组:,并把它的解集在数轴上表示出来。
17、(10分)某草莓种植大户,今年从草莓上市到销售完需要20天,售价为11元/千克,成本y(元/千克)与第x天成一次函数关系,当x=10时,y=7,当x=11时,y=6.1.
(1)求成本y(元/千克)与第x天的函数关系式并写出自变量x的取值范围;
(2)求第几天每千克的利润w(元)最大?最大利润是多少?(利润=售价-成本)
18、(10分)如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF
⑴求证:四边形AECF是平行四边形;
⑵若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,的中位线,把沿折叠,使点落在边上的点处,若、两点之间的距离是,则的面积为______;
20、(4分)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为_________.
21、(4分)如图,AD∥BC,CP和DP分别平分∠BCD和∠ADC,AB过点P,且与AD垂直,垂足为A,交BC于B,若AB=10,则点P到DC的距离是_____.
22、(4分)已知一组数据﹣3、3,﹣2、1、3、0、4、x的平均数是1,则众数是_____.
23、(4分)已知,是一元二次方程的两个实数根,则的值是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,某校组织学生到地开展社会实践活动,乘车到达地后,发现地恰好在地的正北方向,导航显示车辆应沿北偏东方向行驶10公里到达地,再沿北偏西方向行驶一段距离才能到达地.求、两地间的距离,
25、(10分)如图,AD是等腰△ABC底边BC上的中线,点O是AC中点,延长DO到E,使OE=OD,连接AE,CE,求证:四边形ADCE的是矩形.
26、(12分)化简:;
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
分式方程去分母转化为整式方程,由分式方程有增根,确定出x的值,代入整式方程求出m的值即可.
【详解】
去分母得:2x-2-5x-5=m,即-3x-7=m,
由分式方程有增根,得到(x+1)(x-1)=0,即x=1或x=-1,
把x=1代入整式方程得:m=-10,把x=-1代入整式方程得:m=-4,
故选:D.
考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
2、B
【解析】
一次函数的图象与直线y=2x平行,所以k值相等,即k=2,又因该直线过点(3, 7),所以就有7=6+b,从而可求出b的值,进而解决问题.
【详解】
∵一次函数y=kx+b的图象与直线平行,
∴k=2,
则即一次函数的解析式为y=2x+b.
∵直线过点(3, 7),
∴7=6+b,
∴b=1.
∴直线l的解析式为y=2x+1.
故选B.
此题考查一次函数中的直线位置关系,解题关键在于利用待定系数法求解.
3、C
【解析】
根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.
【详解】
解:∵y=(m﹣2)xn﹣1+n是一次函数,
∴m﹣2≠0,n﹣1=1,
∴m≠2,n=2,
故选C.
本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.
4、D
【解析】
方程mx+n=0就是函数y=mx+n的函数值等于0,所以直线y=mx+n与x轴的交点的横坐标就是方程mx+n=0的解.
【详解】
解:∵直线y=mx+n(m,n为常数)经过点(1,0),
∴当y=0时,x=1,
∴关于x的方程mx+n=0的解为x=1.
故选D.
本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
5、B
【解析】
A.,正确;B.=5,则原计算错误;C.,正确;D.,正确,故选B.
6、B
【解析】
由菱形四边形相等、OD=OB,且每边长为6,再有∠DAB=60°,说明△DAB为等边三角形,由DH⊥AB,可得AH=HB(等腰三角形三线合一),可得OH就是AD的一半,即可完成解答。
【详解】
解:∵菱形ABCD的周长为24
∴AD=BD=24÷4=6,OB=OD
由∵∠DAB=60°
∴△DAB为等边三角形
又∵DH⊥AB
∴AH=HB
∴OH=AD=3
故答案为B.
本题考查了菱形的性质、等边三角形、三角形中位线的知识,考查知识点较多,提升了试题难度,但抓住双基,本题便不难。
7、D
【解析】
根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范围.
【详解】
∵关于x的一元二次方程kx2﹣2x+1=1有两个不相等的实数根,
∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,
解得k<1且k≠1.
∴k的取值范围为k<1且k≠1.
故选D.
本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2﹣4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.
8、D
【解析】
根据正方形的面积公式,运用勾股定理可以证明:6个小正方形的面积和等于最大正方形面积的3倍.
【详解】
根据勾股定理得到:A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.
即A、B、C、D、E、F的面积之和为3个G的面积.
∵M的面积是61=36 cm1,
∴A、B、C、D、E、F的面积之和为36×3=108 cm1.
故选D.
考查了勾股定理,注意运用勾股定理和正方形的面积公式证明结论:6个小正方形的面积和等于最大正方形的面积的1倍.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
试题分析:∵反比例函数的图象过点P(2,6),∴k=2×6=1,故答案为1.
考点:反比例函数图象上点的坐标特征.
10、
【解析】
首先求出平均数,然后根据方差的计算法则求出方差.
【详解】
解: 平均数 =(3+4+5+5+6+7)÷6=5
数据的方差 S2=[(3-5)2+(4-5)2+(5-5)2+(5-5)2+(6-5)2+(7-5)2]=
故答案为 .
11、8
【解析】
由折叠的性质知,AE=CE,
∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+5=8cm.
12、(-1,3)
【解析】
利用一次函数与二元一次方程组的关系,可知两一次函数的交点坐标就是两函数解析式所组成的方程组的解,可得结果.
【详解】
解:∵ 方程组 的解是 ,
∴直线y=kx−b与直线y=−x+a的交点坐标为(−1,3),
∴ 直线y=-kx+b与直线y=x-a的交点坐标为(-1,3).
故答案为:(-1,3)
本题考查了一次函数与二元一次方程(组):两一次函数的交点坐标是两函数解析式所组成的方程组的解.
13、(2,5)
【解析】
∵将△ABC先向右平移4个单位长度,再向下平移1个单位长度,
∵图形可知点A的坐标为(-2,6),
∴则平移后的点A1坐标为(2,5).
三、解答题(本大题共5个小题,共48分)
14、小路的宽为2米.
【解析】
根据“小路与观赏亭的面积之和占草坪面积的”,建立方程求解即可得出结论.
【详解】
设小路的宽为x米,
由题意得,(5x)2+(40+50)x﹣2×x×5x=×40×50
解得,x=2或x=﹣8(不合题意,舍去)
答:小路的宽为2米.
考查一元二次方程的应用,读懂题目,找出题目中的等量关系列出方程是解题的关键.
15、(1)菱形,正方形;(2)CE=3或
【解析】
(1)根据“等邻边四边形”的定义即可判断;
(2)分①当CE=AC②当CE=DE时,分别进行求解即可.
【详解】
(1)“等邻边四边形”的是菱形,正方形;
(2)∵∠C=,AB=5,AC=3.
∴BC=
∵四边形ADEC是“等邻边四边形”,
∴分两种情况:
①当CE=AC时,CE=3;
②当CE=DE时,如图,过D作DF⊥BC于点F
设CE=DE=x,
∵DF⊥BC,AC⊥BC,D为AB中点,
则DF=1.5,EF=2-x,
由勾股定理得DE2=EF2+DF2,即x2=(2-x)2+1.52,
解得x=,
∴CE=3或
此题主要考查勾股定理的应用,解题的关键是根据题意分情况讨论.
16、-2
相关试卷
这是一份江西省赣州市于都县2024年数学九年级第一学期开学监测模拟试题【含答案】,共18页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份湖北省黄州思源实验学校2024-2025学年数学九年级第一学期开学预测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖北省麻城思源实验学校数学九年级第一学期开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。