搜索
    上传资料 赚现金
    英语朗读宝

    江苏省扬州市高邮市汪曾祺学校2025届九上数学开学统考试题【含答案】

    江苏省扬州市高邮市汪曾祺学校2025届九上数学开学统考试题【含答案】第1页
    江苏省扬州市高邮市汪曾祺学校2025届九上数学开学统考试题【含答案】第2页
    江苏省扬州市高邮市汪曾祺学校2025届九上数学开学统考试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省扬州市高邮市汪曾祺学校2025届九上数学开学统考试题【含答案】

    展开

    这是一份江苏省扬州市高邮市汪曾祺学校2025届九上数学开学统考试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)整数满足,则的值为
    A.4B.5C.6D.7
    2、(4分)下列各式中,从左到右的变形,属于分解因式的是( )
    A.10x2-5x=5x(2x-1)B.a2-b2-c2=(a-b)(a+b)-c2
    C.a(m+n)=am+anD.2x2-4y+2=2(x2-2y)
    3、(4分)不等式组的解集在数轴上可表示为( )
    A.B.C.D.
    4、(4分)下列说法中:①样本中的方差越小,波动越小,说明样本稳定性越好;②一组数据的众数只有一个;③一组数据的中位数一定是这组数据中的某一个数据;④数据3,3,3,3,2,5中的众数为4;⑤一组数据的方差一定是正数.其中正确的个数为( )
    A.0B.1C.2D.4
    5、(4分)现有甲、乙两个合唱队,队员的平均身高都是175cm,方差分别为,,那么两个队中队员的身高较整齐的是( )
    A.甲队B.乙队C.两队一样高D.不能确定
    6、(4分)如图,小明同学用自制的直角三角形纸板测量树的高度,他调整自己的位置,设法使斜边保持水平,并且边与点在同一直线上.已知纸板的两条直角边,,测得边离地面的高度,,则树高是( )
    A.4米B.4.5米C.5米D.5.5米
    7、(4分)已知一次函数y=kx+b(k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为 ( )
    A.y= x+2B.y= ﹣x+2C.y= x+2或y=﹣x+2D.y= - x+2或y = x-2
    8、(4分)方程的二次项系数、一次项系数、常数项分别为( )
    A.,,B.,,C.,,D.,,
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分) “两直线平行,内错角相等”的逆命题是__________.
    10、(4分)如图,在平行四边形ABCD中,DE平分∠ADC交边BC于点E,AD=5,AB=3,则BE=________.
    11、(4分)已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=___________cm.
    12、(4分)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若BC=BD,则∠A=_____度.
    13、(4分)如图,点A是x轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是,设点A的坐标为.
    当时,正方形ABCD的边长______.
    连结OD,当时,______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)计算:.
    15、(8分)如图,在△ABC中,∠ACB=90°,BC=AC=6,D是AB边上任意一点,连接CD,以CD为直角边向右作等腰直角△CDE,其中∠DCE=90°,CD=CE,连接BE.
    (1)求证:AD=BE;
    (2)当△CDE的周长最小时,求CD的值;
    (3)求证:.
    16、(8分)(1)计算:
    (2)已知:如图,在△ABC中,AB=AC,点D、E、F分别是△ABC各边的中点,求证:四边形AEDF是菱形.
    17、(10分)在菱形ABCD中,∠BAD=60°.
    (1)如图1,点E为线段AB的中点,连接DE,CE,若AB=4,求线段EC的长;
    (2)如图2,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC的中点,连接DQ,MQ,求证:DM=2DQ.
    18、(10分)随着教育教学改革的不断深入,应试教育向素质教育转轨的力度不断加大,体育中考已成为初中毕业升学考试的重要内容之一。为了解某市九年级学生中考体育成绩情况,现从中随机抽取部分考生的体育成绩进行调查,并将调查结果绘制如下图表:
    根据上面提供的信息,回答下列问题:
    (1)表中a和b所表示的数分别为a=______,b=______;并补全频数分布直方图;
    (2)甲同学说“我的体育成绩是此次抽样调查所得数据的中位数。”请问:甲同学的体育成绩在______分数段内?
    (3)如果把成绩在40分以上(含40分)定为优秀那么该市12000名九年级考生中考体育成绩为优秀的约有多少名?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,等边△AOB中,点B在x轴正半轴上,点A坐标为(1,),将△AOB绕点O顺时针旋转15°,此时点A对应点A′的坐标是_____.
    20、(4分)如图,在正方形ABCD中,AB=8厘米,如果动点P在线段AB上以2厘米/秒的速度由A点向B点运动,同时动点Q在以1厘米/秒的速度线段BC上由C点向B点运动,当点P到达B点时整个运动过程停止.设运动时间为t秒,当AQ⊥DP时,t的值为_____秒.
    21、(4分)在△ABC中,AB=12,AC=5,BC=13,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则PM的最小值为_____.
    22、(4分)当0<m<3时,一元二次方程x2+mx+m=0的根的情况是_______.
    23、(4分)如图,正方形ABCD的面积为1,则以相邻两边中点的连线EF为边的正方形EFGH的周长为________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)一分钟投篮测试规定,得6分以上为合格,得9分以上为优秀,甲、乙两组同学的一次测试成绩如下:
    (1)请你根据上述统计数据,把下面的图和表补充完整;
    一分钟投篮成绩统计分析表:
    (2)下面是小明和小聪的一段对话,请你根据(1)中的表,写出两条支持小聪的观点的理由.
    25、(10分)已知:如图平行四边形中,,且,过作于,点是的中点,连接交于点,点是的中点,过作交的延长线于.
    (1)若,求的长.(2)求证:.
    26、(12分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).
    (1)当﹣2<x≤3时,求y的取值范围;
    (2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据16<24<25,得出的取值范围,即可确定n的值.
    【详解】
    解:∵,且16<24<25,
    ∴4<<5,
    ∴n=4,
    故选:A.
    本题考查了估算无理数的大小,运用“夹逼法”是解决本题的关键.
    2、A
    【解析】
    根据因式分解的定义:将一个多项式化为几个整式乘积的形式叫做因式分解,也叫分解因式,对每个选项逐一判断即可.
    【详解】
    解:A. 10x2-5x=5x(2x-1),符合定义,属于分解因式,故A正确
    B. a2-b2-c2=(a-b)(a+b)-c2,不符合定义,故B错误;
    C. a(m+n)=am+an,属于整式的乘法,故C错误;
    D. 2x2-4y+2=2(x2-2y+1),故D错误,
    故答案为:A.
    本题考查了因式分解的概念,判断是否为因式分解的问题,解题的关键是掌握因式分解的概念.
    3、D
    【解析】
    先解不等式组可求得不等式组的解集是,再根据在数轴上表示不等式解集的方法进行表示.
    【详解】
    解不等式组可求得:
    不等式组的解集是,
    故选D.
    本题主要考查不等组的解集数轴表示,解决本题的关键是要熟练掌握正确表示不等式组解集的方法.
    4、B
    【解析】
    ①样本的方差越小,波动性越小,说明样本稳定性越好,故①正确;
    ②一组数据的众数不只有一个,有时有好几个,故②错误;
    ③一组数据的中位数不一定是这组数据中的某一数,若这组数据有偶数个即是将一组数据从小到大重新排列后最中间两个数的平均数,故③错误;
    ④数据:2,2,3,2,2,5的众数为2,故④错误;
    ⑤一组数据的方差不一定是正数,也可能为零,故⑤错误.
    所以说法正确的个数是1个.
    故选B.
    5、B
    【解析】
    根据方差的意义解答.方差,通俗点讲,就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小). 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
    【详解】
    解:∵>,∴身高较整齐的球队是乙队.故选:B.
    本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    6、D
    【解析】
    利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明的身高即可求得树高AB.
    【详解】
    解:∵∠DEF=∠BCD-90° ∠D=∠D
    ∴△ADEF∽△DCB

    ∴DE=40cm=0.4m,EF-20cm=0.2m,AC-1.5m,CD=8m
    ∴解得:BC=4
    ∴AB=AC+BC=1.5+4=5.5米
    故答案为:5.5.
    本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型。
    7、C
    【解析】
    先求出一次函数y=kx+b与x轴和y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.
    【详解】
    ∵一次函数y=kx+b(k≠0)图象过点(0,1),
    ∴b=1,
    令y=0,则x=-,
    ∵函数图象与两坐标轴围成的三角形面积为1,
    ∴×1×|-|=1,即||=1,
    解得:k=±1,
    则函数的解析式是y=x+1或y=-x+1.
    故选C.
    8、D
    【解析】
    首先把方程化为一般式,然后可得二次项系数、一次项系数、常数项.
    【详解】
    2x2-6x=9可变形为2x2-6x-9=0,
    二次项系数为2、一次项系数为-6、常数项为-9,
    故选:D.
    此题主要考查了一元二次方程的一般形式,关键是掌握任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;b叫做一次项系数;c叫做常数项.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、内错角相等,两直线平行
    【解析】
    解:“两直线平行,内错角相等”的条件是:两条平行线被第三条值线索截,结论是:内错角相等.将条件和结论互换得逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,可简说成“内错角相等,两直线平行”.
    10、2
    【解析】
    由平行四边形的性质可得AB=CD,AD=BC,AD∥BC,根据角平分线的性质及平行线的性质可证得∠CDE=∠DEC,由此可得EC=DC,再由BE=BC-CE=AD-AB即可求得AE的长.
    【详解】
    ∵四边形ABCD为平行四边形
    ∴AB=CD,AD=BC,AD∥BC,
    ∴∠DEC =∠ADE,
    ∵DE为∠ADC的平分线,
    ∴∠CDE=∠ADE,
    ∴∠CDE=∠DEC,
    即EC=DC,
    ∴BE=BC-CE=AD-AB=5-3=2.
    故答案为:2.
    本题考查了角平分线的性质以及平行线的性质、平行四边形的性质等知识,证得EC=DC是解题的关键.
    11、6
    【解析】
    根据三角形的中位线性质可得,
    12、1
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半可得CD=BD,再由BC=BD,可得CD=BC=BD,可得△BCD是等边三角形,再根据等边三角形的性质即可求解.
    【详解】
    解:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,
    ∴CD=BD,
    ∵BC=BD,
    ∴CD=BC=BD,
    ∴△BCD是等边三角形,
    ∴∠B=60°,
    ∴∠A=1°.
    故答案为:1.
    考查了直角三角形的性质,等边三角形的判定与性质,关键是证明△BCD是等边三角形.
    13、; 4或6
    【解析】
    (4)在RtAOC中,利用勾股定理求出AC的长度,然后再求得正方形的边长即可;
    (4)先求得OD与y轴的夹角为45〬,然后依据OD的长,可求得点D的坐标,过D作DM⊥y轴,DN⊥x轴,接下来,再证明△DNA≌△DMC,从而可得到CM=AM,从而可得到点A的坐标.
    【详解】
    解:(4)当n=4时,OA=4,
    在Rt△COA中,AC4=CO4+AO4=4.
    ∵ABCD为正方形,
    ∴AB=CB.
    ∴AC4=AB4+CB4=4AB4=4,
    ∴AB= .
    故答案为.
    (4)如图所示:过点D作DM⊥y轴,DN⊥x轴.
    ∵ABCD为正方形,
    ∴A、B、C、D四点共圆,∠DAC=45°.
    又∵∠COA=90°,
    ∴点O也在这个圆上,
    ∴∠COD=∠CAD=45°.
    又∵OD= ,
    ∴DN=DM=4.
    ∴D(-4,4).
    在Rt△DNA和Rt△DMC中,DC=AD,DM=DN,
    ∴△DNA≌△DMC.
    ∴CM=AN=OC-MO=3.
    ∵D(-4,4),
    ∴A(4,0).
    ∴n=4.
    如下图所示:过点D作DM⊥y轴,DN⊥x轴.
    ∵ABCD为正方形,
    ∴A、B、C、D四点共圆,∠DAC=45°.
    又∵∠COA=90°,
    ∴点O也在这个圆上,
    ∴∠AOD=∠ACD=45°.
    又∵OD= ,
    ∴DN=DM=4.
    ∴D(4,-4).
    同理:△DNA≌△DMC,则AN=CM=5.
    ∴OA=ON+AN=4+5=6.
    ∴A(6,0).
    ∴n=6.
    综上所述,n的值为4或6.
    故答案为4或6.
    本题考核知识点:正方形性质、全等三角形性质,圆等. 解题关键点:熟记相关知识点.
    三、解答题(本大题共5个小题,共48分)
    14、19
    【解析】
    分析:先化简括号里面的,再合并,最后计算相乘,即可得到结果.
    详解:原式 = = =.
    点睛:本题主要考查二次根式的化简,二次根式的乘法法则,合并同类二次根式,关键在于熟练运用相关的运算法则,正确认真的进行计算.
    15、(1)见解析;(1);(3)见解析
    【解析】
    (1)先判断出∠ACD=∠BCE,得出△ADC≌△CBE(SAS),即可得出结论;
    (1)先判断出DE=CD,进而得出△CDE的周长为(1+)CD,进而判断出当CD⊥AB时,CD最短,即可得出结论;
    (3)先判断出∠A=∠ABC=45°,进而判断出∠DBE=90°,再用勾股定理得出BE1+DB1=DE1,即可得出结论.
    【详解】
    证明:(1)∵∠ACB=∠DCE=90°,
    ∴∠1+∠3=90°,∠1+∠3=90°,
    ∴∠1=∠1.
    ∵BC=AC,CD=CE,
    ∴△CAD≌△CBE,
    ∴AD=BE.
    (1)∵∠DCE=90°,CD=CE.
    ∴由勾股定理可得CD=.
    ∴△CDE周长等于CD+CE+DE==.
    ∴当CD最小时△CDE周长最小.
    由垂线段最短得,当CD⊥AB时,△CDE的周长最小.
    ∵BC=AC=6,∠ACB=90°,
    ∴AB=6.
    此时AD=CD=.
    ∴当CD时,△CDE的周长最小.
    (3)由(1)易知AD=BE,∠A=∠CBA=∠CBE=45°,
    ∴∠DBE=∠CBE+∠CBA=90°.
    在Rt△DBE中:.
    在Rt△CDE中:.
    ∴.
    此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,判断出CD⊥AB时,CD最短是解本题的关键.
    16、 (1) ;(2)详见解析
    【解析】
    (1)首先计算绝对值、化简二次根式、立方根,然后再计算加减即可;
    (2)利用中位线定理可得ED∥AC,ED=AC,DF∥AB,DF=AB,利用两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形,再证明ED=FD可得结论.
    【详解】
    (1)
    =
    =;
    (2)证明:∵D,E,F分別是BC,AB,AC的中点,
    ∴ED∥AC,ED=AC,DF∥AB,DF=AB,
    ∵ED∥AC,DF∥AB,
    ∴四边形AEDF是平行四边形,
    ∵AB=AC,
    ∴ED=FD,
    ∴四边形AEDF是菱形.
    此题主要考查了实数的计算和菱形的判定,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半;一组邻边相等的平行四边形是菱形.
    17、(1)2 (2)证明见解析
    【解析】
    试题分析:(1)如图1,连接对角线BD,先证明△ABD是等边三角形,根据E是AB的中点,由等腰三角形三线合一得:DE⊥AB,利用勾股定理依次求DE和EC的长;
    (2)如图2,作辅助线,构建全等三角形,先证明△ADH是等边三角形,再由△AMN是等边三角形,得条件证明△ANH≌△AMD(SAS),则HN=DM,根据DQ是△CHN的中位线,得HN=2DQ,由等量代换可得结论.
    试题解析:解:(1)如图1,连接BD,则BD平分∠ABC,∵四边形ABCD是菱形,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,∴∠ABD=∠ABC=60°,∴△ABD是等边三角形,∴BD=AD=4,∵E是AB的中点,∴DE⊥AB,由勾股定理得:DE==,∵DC∥AB,∴∠EDC=∠DEA=90°,在Rt△DEC中,DC=4,EC===;
    (2)如图2,延长CD至H,使CD=DH,连接NH、AH,∵AD=CD,∴AD=DH,∵CD∥AB,∴∠HDA=∠BAD=60°,∴△ADH是等边三角形,∴AH=AD,∠HAD=60°,∵△AMN是等边三角形,∴AM=AN,∠NAM=60°,∴∠HAN+∠NAG=∠NAG+∠DAM,∴∠HAN=∠DAM,在△ANH和△AMD中,∵AH=AD,∠HAN=∠DAM,AN=AM,∴△ANH≌△AMD(SAS),∴HN=DM,∵D是CH的中点,Q是NC的中点,∴DQ是△CHN的中位线,∴HN=2DQ,∴DM=2DQ.
    点睛:本题考查了菱形的性质、三角形的中位线、三角形全等的性质和判定、等边三角形的性质和判定,本题证明△ANH≌△AMD是关键,并与三角形中位线相结合,解决问题;第二问有难度,注意辅助线的构建.
    18、 (1)a=108,b=0.1;补全频数分布直方图见解析; (2)40≤x

    相关试卷

    2024年江苏省扬州市江都区数学九上开学统考模拟试题【含答案】:

    这是一份2024年江苏省扬州市江都区数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省扬州市高邮市汪曾祺学校数学九上开学经典模拟试题【含答案】:

    这是一份2024-2025学年江苏省扬州市高邮市汪曾祺学校数学九上开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年江苏省扬州市高邮市汪曾祺学校数学九年级第一学期期末达标检测试题含答案:

    这是一份2023-2024学年江苏省扬州市高邮市汪曾祺学校数学九年级第一学期期末达标检测试题含答案,共8页。试卷主要包含了方程的根是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map