终身会员
搜索
    上传资料 赚现金

    江苏省徐州市第一中学2025届九上数学开学复习检测试题【含答案】

    立即下载
    加入资料篮
    江苏省徐州市第一中学2025届九上数学开学复习检测试题【含答案】第1页
    江苏省徐州市第一中学2025届九上数学开学复习检测试题【含答案】第2页
    江苏省徐州市第一中学2025届九上数学开学复习检测试题【含答案】第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省徐州市第一中学2025届九上数学开学复习检测试题【含答案】

    展开

    这是一份江苏省徐州市第一中学2025届九上数学开学复习检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,菱形中,,点是边上一点,占在上,下列选项中不正确的是( )
    A.若,则
    B.若, 则
    C.若,则的周长最小值为
    D.若,则
    2、(4分)下列事件中,属于随机事件的是()
    A.没有水分,种子发芽;B.小张买了一张彩票中500万大奖;
    C.抛一枚骰子,正面向上的点数是7;D.367人中至少有2人的生日相同.
    3、(4分)已知点,、,是直线上的两点,下列判断中正确的是( )
    A.B.C.当时,D.当时,
    4、(4分)如图,在矩形中,,,点同时从点出发,分别沿及方向匀速运动,速度均为每秒1个单位长度,当一个点到达终点时另一个点也停止运动,连接.设运动时间为秒,的长为,则下列图象能大致反映与的函数关系的是( )
    A.B.
    C.D.
    5、(4分)如图,直线y=kx+b交x轴于点A(﹣2,0),直线y=mx+n交x轴于点B(5,0),这两条直线相交于点C(1,p),则不等式组的解集为( )
    A.x<5B.x<﹣2C.﹣2<x<5D.﹣2<x<1
    6、(4分)期末考试后,办公室里有两位数学老师正在讨论他们班的数学考试成绩,林老师:“我班的学生考得还不错,有一半的学生考79分以上,一半的学生考不到79分.”王老师:“我班大部分的学生都考在80分到85分之间喔.”依照上面两位老师所叙述的话你认为林、王老师所说的话分别针对( )
    A.平均数、众数B.平均数、极差
    C.中位数、方差D.中位数、众数
    7、(4分)如图,以原点O为圆心,OB长为半径画弧与数轴交于点A,若点A表示的数为x,则x的值为( )
    A.B.-C.-2D.2-
    8、(4分)博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为公众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高.年我国博物馆参观人数统计如下:
    小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增长;②2019年末我国博物馆参观人数估计将达到10.82亿人次;③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%.其中正确的是( )
    A.①③B.①②③C.①②④D.①②③④
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是_____.
    10、(4分)如图的直角三角形中未知边的长x=_______.
    11、(4分)点P(﹣3,4)到x轴和y轴的距离分别是_____.
    12、(4分)计算的结果是______.
    13、(4分)二次根式中字母 a 的取值范围是______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,先阅读再解决后面的问题:
    原题:如图1,点E,F分别在正方形ABCD的边BC,CD上,,连接EF,求证:EF=BE+DF.

    解题分析:由于AB=AD,我们可以延长CD到点G,使DG=BE,易得,可证.再证明,得EF=FG=DG+FD=BE+DF.
    问题(1):如图2,在四边形ABCD中,AB=AD,,E,F分别是边BC,CD上的点,且,求证:EF=BE+FD;

    问题(2):如图3,在四边形ABCD中,,,AB=AD=1,点E,F分别在四边形ABCD的边BC,CD上的点,且,求此时的周长
    15、(8分)随着人们环保意识的增强,越来越多的人选择低碳出行,各种品牌的山地自行车相继投放市场.顺风车行五月份型车的销售总利润为元,型车的销售总利润为元.且型车的销售数量是型车的倍,已知销售型车比型车每辆可多获利元.
    (1)求每辆型车和型车的销售利润;
    (2)若该车行计划一次购进两种型号的自行车共台且全部售出,其中型车的进货数量不超过型车的倍,则该车行购进型车、型车各多少辆,才能使销售总利润最大?最大销售总利润是多少?
    16、(8分)如图,△ABC的三个顶点的坐标分别为A(﹣1,﹣1).B(3,2),C(1,﹣2).
    (1)判断△ABC的形状,请说明理由.
    (2)求△ABC的周长和面积.
    17、(10分)如图,在平面直角坐标系中,直线l1:分别与x轴、y轴交于点B、C,且与直线l2:交于点A.
    (1)求出点A的坐标
    (2)若D是线段OA上的点,且△COD的面积为12,求直线CD的解析式
    (3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.
    18、(10分)如图是某港口在某天从0时到12时的水位情况变化曲线.
    (1)在这一问题中,自变量是什么?
    (2)大约在什么时间水位最深,最深是多少?
    (3)大约在什么时间段水位是随着时间推移不断上涨的?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)分解因式:___________.
    20、(4分)如图,平行四边形中,,,∠,点是的中点,点在的边上,若为等腰三角形,则的长为__________.
    21、(4分)如图,已知点 A 是反比例函数 y 在第一象限图象上的一个动点,连接 OA,以OA 为长,OA为宽作矩形 AOCB,且点 C 在第四象限,随着点 A 的运动,点 C 也随之运动,但点 C 始终在反比例函数 y  的图象上,则 k 的值为________.
    22、(4分)小明五次测试成绩为:91、89、88、90、92,则五次测试成绩平均数为_____,方差为________.
    23、(4分)某市规定了每月用水不超过l8立方米和超过18立方米两种不同的收费标准,该市用户每月应交水费y(元)是用水x(立方米)的函数,其图象如图所示.已知小丽家3月份交了水费102元,则小丽家这个月用水量为_____立方米.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某班级为奖励参加校运动会的运动员,分别用160元和120元购买了相同数量的甲、乙两种奖品,其中每件甲种奖品比每件乙种奖品贵4元.
    请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.
    25、(10分)计算(结果可保留根号):
    (1) (2)
    26、(12分)阅读下列材料:
    数学课上,老师出示了这样一个问题:
    如图1,正方形为中,点、在对角线上,且,探究线段、、之间的数量关系,并证明.
    某学习小组的同学经过思考,交流了自己的想法:
    小明:“通过观察和度量,发现与存在某种数量关系”;
    小强:“通过观察和度量,发现图1中线段与相等”;
    小伟:“通过构造(如图2),证明三角形全等,进而可以得到线段、、之间的数量关系”.
    老师:“此题可以修改为‘正方形中,点在对角线上,延长交于点,在上取一点,连接(如图3).如果给出、的数量关系与、的数量关系,那么可以求出的值”.
    请回答:
    (1)求证:;
    (2)探究线段、、之间的数量关系,并证明;
    (3)若,,求的值(用含的代数式表示).
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    A.正确,只要证明即可;
    B.正确,只要证明进而得到是等边三角形,进而得到结论;
    C.正确,只要证明得出是等边三角形,因为的周长为,所以等边三角形的边长最小时,的周长最小,只要求出的边长最小值即可;
    D.错误,当时,,由此即可判断.
    【详解】
    A正确,理由如下:
    都是等边三角形,
    B正确,理由如下:
    是等边三角形,
    同理
    是等边三角形,
    C正确,理由如下:
    是等边三角形,
    的周长为:

    等边三角形边长最小时,的周长最小,
    当时,DE最小为,
    的周长最小值为.
    D错误,当时,,此时时变化的不是定值,故错误.
    故选D.
    本题主要考查全等的判定的同时,结合等边三角形的性质,涉及到最值问题,仔细分析图形,明确图形中的全等三角形是解决问题的关键.
    2、B
    【解析】
    A选项中,因为“没有水分,种子发芽”是“确定事件中的不可能事件”,所以不能选A;
    B选项中,因为“小张买了一张彩票中500万大奖”是“随机事件”,所以可以选B;
    C选项中,因为“抛一枚骰子,正面向上的点数是7”是“确定事件中的不可能事件”,所以不能选C;
    D选项中,因为“367人中至少有2人的生日相同”是“确定事件中的必然事件”,所以不能选D.
    故选B.
    3、D
    【解析】
    根据一次函数图象的增减性,结合一次函数图象上点的横坐标的大小关系,即可得到答案.
    【详解】
    解:一次函数上的点随的增大而减小,
    又点,、,是直线上的两点,
    若,则,
    故选:.
    本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.
    4、A
    【解析】
    分三种情况讨论即可求解.
    【详解】
    解:当点A在AD上,点M在AB上,则d=t,(0≤t≤4);
    当点A在CD上,点M在AB上,则d=4,(4<t≤6);
    当点A在CD上,点M在BC上,则d=(10-t)=-t+10(6<t≤10);
    故选:A.
    本题考查了动点问题的函数图象,根据点P的位置的不同,分三段讨论求解是解题的关键.
    5、B
    【解析】
    根据图象可得,y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,即可求解.
    【详解】
    解:根据图象可得,y=kx+b<0,则x<﹣2,
    y=mx+n>0,则x<5,
    ∴不等式组的解集为:x<﹣2,
    故选:B.
    本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出x的值,是解答本题的关键.
    6、D
    【解析】
    试题分析:∵有一半的学生考79分以上,一半的学生考不到79分,
    ∴79分是这组数据的中位数,
    ∵大部分的学生都考在80分到85分之间,
    ∴众数在此范围内.
    故选D.
    考点:统计量的选择.
    7、B
    【解析】
    根据勾股定理列式求出x2,再利用平方根的相反数定义解答.
    【详解】
    由图可知,x2=12+22=5,
    则x1=−,x2=(舍去).
    故选:B.
    考查了实数与数轴,主要是数轴上无理数的作法,需熟练掌握.
    8、A
    【解析】
    根据条形统计图中的信息对4个结论进行判断即可.
    【详解】
    由条形统计图可知,从2012年到2018年,博物馆参观人数呈现持续增长态势,故①正确;
    从2012年到2018年增加了10.08-5.64=4.44(亿人次),平均每年增加4.44÷6=0.74(亿人次)
    则2019年将会达到10.08+0.74=10.82(亿人次),故②正确;
    2013年增加了6.34-5.64=0.7(亿人次),2014年增加了7.18-6.34=0.84(亿人次),2015年增加了7.81-7.18=0.63(亿人次),2016年增加了8.50-7.81=0.69(亿人次),2017年增加了9.72-8.50=1.22(亿人次),2018年增加了10.08-9.72=0.36(亿人次),则2017年增幅最大,故③正确;
    设从2016年到2018年年平均增长率为x,则8.50(1+x)2=10.08
    解得x0.09(负值已舍),即年平均增长约为9%,故④错误;
    综上可得正确的是①②③.
    故选:B.
    此题考查了条形统计图,弄清题中图形中的数据是解本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(5,1)
    【解析】
    【分析】根据点坐标平移特征:左减右加,上加下减,即可得出平移之后的点坐标.
    【详解】∵点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,
    ∴所得的点的坐标为:(5,1),
    故答案为(5,1).
    【点睛】本题考查了点的平移,熟知点的坐标的平移特征是解题的关键.
    10、
    【解析】
    根据勾股定理求解即可.
    【详解】
    x=.
    故答案为:.
    本题考查了勾股定理,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.
    11、4;1.
    【解析】
    首先画出坐标系,确定P点位置,根据坐标系可得答案.
    【详解】
    点P(﹣1,4)到x轴的距离为4,到y轴的距离是1.
    故答案为:4;1.
    本题考查了点的坐标,关键是正确确定P点位置.
    12、1
    【解析】
    利用二次根式的计算法则正确计算即可.
    【详解】
    解:
    =
    =
    =1
    故答案为:1.
    本题考查的是二次根式的混合运算,掌握计算法则是解题关键.
    13、.
    【解析】
    运用二次根式中的被开方数的非负性进行求解即可,即有意义,则a≥0.
    【详解】
    解:由题意得2a+5≥0,解得:.
    故答案为.
    本题考查了二次根式的意义和性质,对于二次根式而言,关键是要注意两个非负性:一是a≥0,二是≥0;在各地试卷中是高频考点.
    三、解答题(本大题共5个小题,共48分)
    14、(1),见解析;(2)周长为.
    【解析】
    (1)在CD的延长线上截取DG=BE,连接AG,证出△ABE≌△ADG,根据全等三角形的性质得出BE=DG,再证明△AEF≌△AGF,得EF=FG,即可得出答案;
    (2)连接AC,证明△ABC≌△ADC(SSS).得∠DAC=∠BAC,同理由(1)得EF=BE+DF,可计算△CEF的周长.
    【详解】
    证明:(1)在CD的延长线上截取DG=BE,连接AG,如图2,
    ∵∠ADF=90°,∠ADF+∠ADG=180°,
    ∴∠ADG=90°,
    ∵∠B=90°,
    ∴∠B=∠ADG=90°,
    ∵BE=DG,AB=AD,
    ∴△ABE≌△ADG(SAS),
    ∴∠BAE=∠DAG,AG=AE,
    ∴∠EAG=∠EAD+∠DAG=∠EAD+∠ABE=∠BAD,
    ∵∠EAF=∠BAD,
    ∵∠EAG=∠EAG=(∠EAF+∠FAG),
    ∴∠EAF=∠FAG,
    又∵AF=AF,AE=AG,
    ∴△AEF≌△AFG(SAS),
    ∴EF=FG=DF+DG=EB+DF;
    (2)解:连接AC,如图3,
    ∵AB=AD,BC=CD,AC=AC,
    ∴△ABC≌△ADC(SSS).
    ∴∠DAC=∠BAC,
    ∴∠BAC=∠BAD=60°,
    ∵∠B=90°,AB=1,
    ∴在Rt△ABC中,AC=2,BC===,
    由(1)得EF=BE+DF,
    ∴△CEF的周长=CE+CF+EF=2BC=2.
    本题是四边形的综合题,考查了全等三角形的性质和判定,正方形的性质的应用,解此题的关键是能正确作出辅助线得出全等三角形,难度适中.
    15、(1)每辆A型车的利润为1元,每辆B型车的利润为2元.(2)商店购进34台A型车和66台B型车,才能使销售总利润最大,最大利润是3元.
    【解析】
    (1)设每台A型车的利润为x元,则每台B型车的利润为(x+50)元,根据题意得×2; (2)设购进A型车a台,这100辆车的销售总利润为y元,据题意得,y=1a+2(100﹣a),即y=﹣50a+200,再由B型车的进货数量不超过A型车的2倍确定a的取值范围,然后可得最大利润.
    【详解】
    解:(1)设每台A型车的利润为x元,则每台B型车的利润为(x+50)元,
    根据题意得×2,
    解得x=1.
    经检验,x=1是原方程的解,
    则x+50=2.
    答:每辆A型车的利润为1元,每辆B型车的利润为2元.
    (2)设购进A型车a台,这100辆车的销售总利润为y元,
    据题意得,y=1a+2(100﹣a),即y=﹣50a+200,
    100﹣a≤2a,
    解得a≥33,
    ∵y=﹣50a+200,
    ∴y随a的增大而减小,
    ∵a为正整数,
    ∴当a=34时,y取最大值,此时y=﹣50×34+200=3.
    即商店购进34台A型车和66台B型车,才能使销售总利润最大,最大利润是3元.
    根据题意列出分式方程和不等式.理解题意,弄清数量关系是关键.
    16、(1)△ABC是直角三角形(2)5
    【解析】
    (1)根据点A、B、C的坐标求出AB、AC、BC的长,然后利用勾股定理逆定理判断为直角三角形;
    (2)根据三角形的周长和面积公式解答即可.
    【详解】
    (1)△ABC是直角三角形,
    由勾股定理可得:,


    ∴AC2+BC2=AB2,
    ∴△ABC是直角三角形,
    (2)△ABC的周长为:AC+BC+AB=,
    △ABC的面积为:.
    本题考查勾股定理逆定理,解题的关键是掌握勾股定理逆定理.
    17、(1)A(6,3);(2)y=﹣x+6;(3)存在满足条件的点的P,其坐标为(6,0)或(3,﹣3)或(,+6).
    【解析】
    (1)把x=0,y=0分别代入直线L1,即可求出y和x的值,即得到B、C的坐标,解由直线BC和直线OA的方程组即可求出A的坐标;(2)设D(x,x),代入面积公式即可求出x,即得到D的坐标,设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入即可求出直线CD的函数表达式;(3)存在点Q,使以O、C、P、Q为顶点的四边形是菱形,根据菱形的性质能写出Q的坐标.
    【详解】
    (1)解方程组,得, ∴A(6,3);
    (2)设D(x, x),
    ∵△COD的面积为12,∴×6×x=12,
    解得:x=4,∴D(4,2),
    设直线CD的函数表达式是y=kx+b,
    把C(0,6),D(4,2)代入得:,解得:,
    ∴直线CD解析式为y=﹣x+6;
    (3)在直线l1:y=﹣x+6中,当y=0时,x=12,
    ∴C(0,6)
    存在点P,使以O、C、P、Q为顶点的四边形是菱形,
    如图所示,分三种情况考虑:
    (i)当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形,此时OP1=OC=6,即P1(6,0);
    (ii)当四边形OP2CQ2为菱形时,由C坐标为(0,6),得到P2纵坐标为3,
    把y=3代入直线直线CQ的解析式y=﹣x+6中,可得3=﹣x+6,解得x=3,此时P2(3,﹣3);
    (iii)当四边形OQ3P3C为菱形时,则有OQ3=OC=CP3=P3Q3=6,设P3(x,﹣x+6),
    ∴x2+(﹣x+6﹣6)2=62,解得x=3或x=﹣3(舍去),此时P3(3,﹣3+6);
    综上可知存在满足条件的点的P,其坐标为(6,0)或(3,﹣3)或(,+6).
    本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.
    18、(1)自变量是时间;(2)大约在3时水位最深,最深是8米;(3)在0到3时和9到12时,水位是随着时间推移不断上涨的.
    【解析】
    (1)根据函数图象,可以直接写出自变量;
    (2)根据函数图象中的数据可以得到大约在什么时间水位最深,最深是多少;
    (3)根据函数图象,可以写出大约在什么时间段水位是随着时间推移不断上涨的.
    【详解】
    (1)由图象可得,
    在这一问题中,自变量是时间;
    (2)大约在3时水位最深,最深是8米;
    (3)由图象可得,
    在0到3时和9到12时,水位是随着时间推移不断上涨的.
    本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、ab(a+b)(a﹣b).
    【解析】
    分析:先提公因式ab,再把剩余部分用平方差公式分解即可.
    详解:a3b﹣ab3,=ab(a2﹣b2),=ab(a+b)(a﹣b).
    点睛:此题考查了综合提公因式法和公式法因式分解,分解因式掌握一提二用,即先提公因式,再利用平方差或完全平方公式进行分解.
    20、或或1
    【解析】
    根据点P所在的线段分类讨论,再分析每种情况下腰的情况,然后利用直角三角形的性质和勾股定理分别求值即可.
    【详解】
    解:①当点P在AB上时,由∠ABC=120°,此时只能是以∠PBE为顶角的等腰三角形,BP=BE,过点B作BF⊥PE于点F,如下图所示
    ∴∠FBE=∠ABC=10°,EP=2EF
    ∴∠BEF=90°-∠FBE=30°
    ∵,点是的中点
    ∴BE=
    在Rt△BEF中,BF=
    根据勾股定理:EF=
    ∴EP=2EF=;
    ②当点P在AD上时,过点B作BF⊥AB于F,过点P作PG⊥BC,如下图所示
    ∵∠ABC=120°
    ∴∠A=10°
    ∴∠ABF=90°-∠A=30°
    在Rt△ABF中AF=,BF=
    ∴BP≥BF>BE,EP≥BF>BE
    ∴此时只能是以∠BPE为顶角的等腰三角形,BP=PE,
    ∴PG=BF=,EG=
    根据勾股定理:EP=;
    ③当点P在CD上时,过点E作EF⊥CD于F,过点B作BG⊥CD
    由②可知:BE的中垂线与CD无交点,
    ∴此时BP≠PE
    ∵∠A=10°,四边形ABCD为平行四边形
    ∴∠C=10°
    在Rt△BCG中,∠CBG=90°-∠C=30°,CG=
    根据勾股定理:BG=
    ∴BP≥BG>BE
    ∵EF⊥CD,BG⊥CD,点E为BC的中点
    ∴EF为△BCG的中位线
    ∴EF=
    ∴此时只能是以∠BEP为顶角的等腰三角形,BE=PE=1.
    综上所述:的长为或或1.
    故答案为:或或1
    此题考查的是等腰三角形的性质、直角三角形的性质和勾股定理,掌握三线合一、30°所对的直角边是斜边的一半、利用勾股定理解直角三角形和分类讨论的数学思想是解决此题的关键.
    21、−3
    【解析】
    设A(a,b),则ab=,分别过A,C作AE⊥x轴于E,CF⊥x轴于F,根据相似三角形的判定证得△AOE∽△COF,由相似三角形的性质得到OF=,CF=,则k=-OF•CF=-3.
    【详解】
    设A(a,b),
    ∴OE=a,AE=b,
    ∵在反比例函数y=图象上,
    ∴ab=,
    分别过A,C作AE⊥x轴于E,CF⊥x轴于F,
    ∵矩形AOCB,
    ∴∠AOE+∠COF=90°,
    ∴∠OAE=∠COF=90°−∠AOE,
    ∴△AOE∽△OCF,
    ∵OC=OA,
    ∴===,
    ∴OF=AE=b,CF=OE=a,
    ∵C在反比例函数y=的图象上,且点C在第四象限,
    ∴k=−OF⋅CF=−b⋅a=−3ab=−3.
    本题考查反比例函数图象上点的坐标特征和矩形的性质,解题的关键是掌握反比例函数图象上点的坐标特征和矩形的性质.
    22、90 1
    【解析】
    解:平均数=,
    方差=
    故答案为:90;1.
    23、1
    【解析】
    根据题意和函数图象中的数据可以求得当x>18时对应的函数解析式,根据102>54可知,小丽家用水量超过18立方米,从而可以解答本题.
    【详解】
    解:设当x>18时的函数解析式为y=kx+b,
    图象过(18,54),(28,94)
    ∴,得
    即当x>18时的函数解析式为:y=4x-18,
    ∵102>54,
    ∴小丽家用水量超过18立方米,
    ∴当y=102时,102=4x-18,得x=1,
    故答案为:1.
    本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
    二、解答题(本大题共3个小题,共30分)
    24、问题:甲、乙两种奖品的单价分别是多少元?
    每件甲种奖品为16元,每件乙种奖品为12元.
    【解析】
    首先提出问题,例如:甲、乙两种奖品的单价分别是多少元?然后根据本题的等量关系列出方程并求解。
    【详解】
    问题:甲、乙两种奖品的单价分别是多少元?
    解:设每件乙种奖品为x元,则每件甲种奖品为(x+4)元,列方程得:
    160x=120(x+4)
    x=12
    经检验,x=12是原分式方程的解。
    则:x+4=16
    答:每件甲种奖品为16元,每件乙种奖品为12元.
    本题考查了分式方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解。
    25、(1);(2)
    【解析】
    (1)先化为最简二次根式,然后合并同类项即可;
    (2)利用多项式乘法法则进行计算即可.
    【详解】
    解:(1)原式
    (2)原式
    本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.
    26、(1)详见解析;(2),证明详见解析;(3)
    【解析】
    (1)依题意由SAS可证:.可推
    (2)过点作,且,连接、,由SAS可证
    可得,可得.利用勾股定理即可知:.即.
    (3)延长至使,连接.设,,
    则,,,,.由SAS可证,可得 ,,由角关系推出.
    所以.推出,所以.得出结论.
    【详解】
    (1)证明:∵四边形为正方形,
    ∴,.
    ∵,
    ∴.
    ∴.
    (2)结论:.
    证明:如图2,过点作,且,连接、,
    则,.
    ∵,,

    ∴,.
    ∴.
    ∴.
    即.
    (3)解:延长至使,连接.
    设,,
    则,,.
    ∵四边形为正方形,
    ∴,,
    ,.
    ∴,
    ∴,,
    .
    ∴.
    ∴.
    ∴.
    ∴.
    该题综合性较强,运用了全等三角形、等腰三角形,以及三角形内角和等知识点,灵活运用全等是解题的关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    江苏省徐州市名校2024年九年级数学第一学期开学复习检测试题【含答案】:

    这是一份江苏省徐州市名校2024年九年级数学第一学期开学复习检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省徐州市贾汪区贾庄中学2024年数学九上开学复习检测试题【含答案】:

    这是一份江苏省徐州市贾汪区贾庄中学2024年数学九上开学复习检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省徐州市第一中学2024年九上数学开学学业质量监测试题【含答案】:

    这是一份江苏省徐州市第一中学2024年九上数学开学学业质量监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map