江苏省徐州市名校2024年九年级数学第一学期开学复习检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列四组线段中,可以构成直角三角形的是( )
A.4,5,6B.2,3,4C.1,1,D.
2、(4分)两个相似三角形的最短边分别为4cm和2cm它们的周长之差为12cm,那么大三角形的周长为( )
A.18cmB.24cmC.28cmD.30cm
3、(4分)三角形的三边长分别为①5,12,13;②9,40,41;③8,15,17;④13,84,85,其中能够构成直角三角形的有( )
A.1个B.2个C.3个D.4个
4、(4分)过原点和点的直线的解析式为( )
A.B.C.D.
5、(4分)函数 y 中,自变量 x 的取值范围是( )
A.x=-5B.x≠-5C.x=0D.x≠0
6、(4分)已知一次函数与的图象如图,则下列结论:①;②;③关于的方程的解为;④当时,,其中正确的个数是
A.1B.2C.3D.4
7、(4分)下面的图形是天气预报的图标,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
8、(4分)根据下表中一次函数的自变量x与函数y的对应值,可得p的值为()
A.1B.-1C.3D.-3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)统计学校排球队队员的年龄,发现有岁、岁、岁、岁等四种年龄,统计结果如下表,则根据表中信息可以判断表中信息可以判断该排球队队员的平均年龄是__________岁.
10、(4分)如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于_____.
11、(4分)如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为_____.
12、(4分)如图,四边形ABCD是平行四边形,添加一个条件:________,可使它成为矩形.
13、(4分)在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,投到红球的概率是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,两点分别是轴和轴正半轴上两个动点,以三点为顶点的矩形的面积为24,反比例函数(为常数且)的图象与矩形的两边分别交于点.
(1)若且点的横坐标为3.
①点的坐标为,点的坐标为(不需写过程,直接写出结果);
②在轴上是否存在点,使的周长最小?若存在,请求出的周长最小值;若不存在,请说明理由.
(2)连接,在点的运动过程中,的面积会发生变化吗?若变化,请说明理由,若不变,请用含的代数式表示出的面积.
15、(8分)某公司调查某中学学生对其环保产品的了解情况,随机抽取该校部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为,根据调查结果绘制了如下尚不完整的统计图.
(1)本次问卷共随机调查了名学生,扇形统计图中
(2)请根据数据信息,补全条形统计图;
(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?
16、(8分)如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,DE,BF与对角线AC分别交于点M,N,连接MF,NE.
(1)求证:DE∥BF
(2)判断四边形MENF是何特殊的四边形?并对结论给予证明;
17、(10分)分解因式:
(1)
(2)
18、(10分)如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.
EF与BD相交于点M.
(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知中,,点为边的中点,若,则长为__________.
20、(4分)将正比例函数y= -x的图象向上平移,则平移后所得图象对应的函数解析式可能是______________(答案不唯一,任意写出一个即可).
21、(4分)已知函数,则x取值范围是_____.
22、(4分)化简﹣的结果是_____.
23、(4分)若二次根式有意义,则的取值范围是______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知直线 经过点M(-2,1),求此直线与x 轴,y 轴的交点坐标.
25、(10分)如图,一次函数y=kx+b的图象经过(2,4)、(0,2)两点,与x轴相交于点C.求:
(1)此一次函数的解析式;
(2)△AOC的面积.
26、(12分)已知一次函数的图象过点A(0,3)和点B(3,0),且与正比例函数的图象交于点P.
(1)求函数的解析式和点P的坐标.
(2)画出两个函数 的图象,并直接写出当时的取值范围.
(3)若点Q是轴上一点,且△PQB的面积为8,求点Q的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:A.,不能构成直角三角形,故选项错误;
B.,不能构成直角三角形,故选项错误;
C.,能构成直角三角形,故选项正确;
D.,不能构成直角三角形,故选项错误.
故选:C.
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断是解答此题的关键.
2、B
【解析】
利用相似三角形周长的比等于相似比得到两三角形的周长的比为2:1,于是可设两三角形的周长分别为2xcm,xcm,所以2x﹣x=12,然后解方程求出x后,得出2x即可.
【详解】
解:∵两个相似三角形的最短边分别为4cm和2cm,
∴两三角形的周长的比为4:2=2:1,
设两三角形的周长分别为2xcm,xcm,
则2x﹣x=12,
解得x=12,
所以2x=24,
即大三角形的周长为24cm.
故选:B.
本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.
3、D
【解析】
试题解析:①、∵52+122=169=132,∴能构成直角三角形,故本小题正确;
②、92+402=1681=412=169,∴能构成直角三角形,故本小题正确;
③、82+152=289=172,∴能构成直角三角形,故本小题正确;
④、∵132+842=852,∴能构成直角三角形,故本小题正确.
故选D.
4、A
【解析】
设直线的解析式为y=kx(k≠0),把(2,3)代入函数解析式,根据待定系数法即可求得.
【详解】
解:∵直线经过原点,
∴设直线的解析式为y=kx(k≠0),
把(2,3)代入得3=2k,
解得,
该直线的函数解析式为y=x.
故选:A.
此题主要考查了用待定系数法求函数的解析式.熟练掌握待定系数法是解题的关键.
5、B
【解析】
根据分式的意义的条件:分母不等于0,可以求出x的范围.
【详解】
解:根据题意得:x+1≠0,
解得:x≠-1.
故选B.
函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
6、C
【解析】
根据一次函数的性质对①②进行判断;利用一次函数与一元一次方程的关系对③进行判断;利用函数图象,当x≥2时,一次函数y1=x+a在直线y2=kx+b的上方,则可对④进行判断.
【详解】
一次函数经过第一、二、四象限,
,,所以①正确;
直线的图象与轴交于负半轴,
,,所以②错误;
一次函数与的图象的交点的横坐标为2,
时,,所以③正确;
当时,,所以④正确.
故选.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数与一元一次方程,一次函数的性质.
7、A
【解析】
试题分析:根据轴对称图形与中心对称图形的概念求解,解答轴对称图形问题的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;解答中心对称图形问题的关键是要寻找对称中心,旋转180度后与原图重合.
A、是轴对称图形,也是中心对称图形,故正确;
B、不是轴对称图形,也不是中心对称图形,故错误;
C、是轴对称图形,不是中心对称图形,故错误;
D、不是轴对称图形,也不是中心对称图形,故错误.
考点:1.中心对称图形;2.轴对称图形.
8、A
【解析】
设一次函数的解析式为y=kx+b,将表格中的对应的x,y的值(-2,3),(1,0)代入得:
,解得:.
∴一次函数的解析式为y=-x+1.
当x=0时,得y=1.故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
计算出学校排球队队员的总年龄再除以总人数即可.
【详解】
解:(岁)
所以该排球队队员的平均年龄是14岁.
故答案为:14
本题考查了平均数,掌握求平均数的方法是解题的关键.
10、96
【解析】
试题解析:如图所示,连接AC ,在Rt△ADC中,CD=6,AD=8,则.
在△ ABC中,AB=26,BC=24,AC=10,则 ,故△ ABC为直角三角形.
.
故本题的正确答案应为96.
11、x>1
【解析】
试题分析:根据两直线的图象以及两直线的交点坐标来进行判断.
试题解析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;
由于两直线的交点横坐标为:x=1,
观察图象可知,当x>1时,x+b>ax+3;
考点:一次函数与一元一次不等式.
12、∠ABC=90°(或AC=BD等)
【解析】
本题是一道开放题,只要掌握矩形的判定方法即可.由有一个角是直角的平行四边形是矩形.想到添加∠ABC=90°;由对角线相等的平行四边形是矩形.想到添加AC=BD.
13、
【解析】
由在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同,直接利用概率公式求解即可求得答案.
【详解】
∵在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.
∴从中随机摸出一个球,摸到红球的概率是:
故答案为:
此题考查概率公式,掌握运算法则是解题关键
三、解答题(本大题共5个小题,共48分)
14、(1)①点坐标为,点坐标为;②存在,周长;
(2)不变,的面积为
【解析】
(1)①求出点E的坐标,得出C点的纵坐标,根据面积为24即可求出C的坐标,得出F点横坐标即可求解;
②作点E关于x轴的对称点G,连接GF,与x轴的交点为p,此时的周长最小
(2)先算出三角形与三角形的面积,再求出三角形的面积即可.
【详解】
(1)①点坐标为,点坐标为;
②作点E关于x轴的对称点G,连接GF,求与x轴的交点为p,此时的周长最小
由①得EF=
由对称可得EP=PH,
由 H(3,-4) F(6,2)可得HF=3
△PEF=EP+PF+EF=FH+EF=
(2)不变,求出三角形与三角形的面积为
求出三角形的面积为
求出三角形的面积为
设E位(a, ),则S△AEO=,同理可得S△AFB=,
∵矩形的面积为24
F(,),C(,)
S△CEF=
S=24--k=.
本题考查的是函数与矩形的综合运用,熟练掌握三角形和对称是解题的关键.
15、(1)50; 32;(2)见解析;(3)560人.
【解析】
分析:(1)由条形统计图和扇形统计图可知,用“非常了解”的人数为8人除以所占比例为16%,即可求得总人数;“一般了解”的人数为16人除以总人数即可求所占比例;
(2)用总人数减去B、C、D部分的人数求出A部分的人数,然后补全条形统计图即可;
(3)先根据扇形统计图得到部分学生“非常了解”和“比较了解”的人数占样本总人数的比例,再由样本估计总体即可求解.
详解:(1)8÷16%=50人;
16÷50=32%.
(2)50-20-16-6=8人.如图,
(3)1000×(16%+40%)=560人.
点睛:本题考差了扇形统计图和条形统计图的综合,解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了那个量的数据,从而用条形统计图中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.
16、(1)见解析;(2)平行四边形,证明见解析
【解析】
(1)根据已知条件证明四边形DEBF为平行四边形,即可得到;
(2)证明△FNC≌EMA,得到FN=EM,又FN∥EM,可得结果.
【详解】
解:(1)证明:在平行四边形ABCD中,AB∥CD,AB=CD,
∵E,F分别是AB,CD的中点,
∴DF=BE,DF∥BE,
∴四边形DEBF为平行四边形,
∴DE∥BF;
(2)MENF为平行四边形,理由是:
如图,∵DE∥BF,
∴∠FNC=∠DMC=∠AME,
又∵DC∥AB,
∴∠ACD=∠CAB,又CF=AE=AB=CD,
∴△FNC≌EMA(AAS),
∴FN=EM,又FN∥EM,
∴MENF为平行四边形.
本题考查了平行四边形的性质和判定,本题考查了平行四边形的判定和性质,难度不大,解题的关键是要找到合适的全等三角形.
17、(1);(2).
【解析】
(1)原式提取公因式,再利用完全平方公式分解即可;
(2)原式变形后,提取公因式即可.
【详解】
解:(1)原式;
(2)原式.
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
18、(1)证明见解析(2)3
【解析】
试题分析:(1)要证明△EDM∽△FBM成立,只需要证DE∥BC即可,而根据已知条件可证明四边形BCDE是平行四边形,从而可证明相似;
(2)根据相似三角形的性质得对应边成比例,然后代入数值计算即可求得线段的长.
试题解析:(1)证明:∵AB="2CD" , E是AB的中点,∴BE=CD,又∵AB∥CD,∴四边形BCDE是平行四边形,∴BC∥DE, BC=DE,∴△EDM∽△FBM;
(2)∵BC=DE, F为BC的中点,∴BF=DE,∵△EDM∽△FBM,∴,∴BM=DB,又∵DB=9,∴BM=3.
考点:1. 梯形的性质;2. 平行四边形的判定与性质;3. 相似三角形的判定与性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
∵∠ACB=90°,D为AB的中点,
∴AB=2CD=1,
故答案为:1.
本题考查的是直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.
20、y=-x+1
【解析】
根据平面坐标系中函数图像的平移规律“左加右减,上加下减”可知,当平移1个单位时,平移后的函数解析式为y=-x+1.
【详解】
由题意得:y = -x的图像向上平移,得到y=-x+1,故本题答案是y=-x+1.
本题主要考查图形的平移和一次函数的图像性质,学生掌握即可.
21、x≥1.
【解析】
试题解析:根据题意得,x-1≥0,
解得x≥1.
考点:函数自变量的取值范围.
22、﹣
【解析】
原式通分并利用同分母分式的减法法则计算即可得到结果
【详解】
原式=
=
=
故答案为:
此题考查分式的加减法,掌握运算法则是解题关键
23、
【解析】
根据二次根式的意义,被开方数是非负数求解即可.
【详解】
根据题意得:
解得,
故答案为:.
本题主要考查学生对二次根式有意义时被开方数的取值的掌握,熟知二次根式有意义的条件是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(0,-3)
【解析】
将点M(-2,1)代入直线y=kx-3,求出k的值,然后让横坐标为0,即可求出与y轴的交点.让纵坐标为0,即可求出与x轴的交点.
【详解】
∵y=kx-3过(-2,1),
∴1=-2k-3,
∴k=-2,
∴y=-2x-3,
∵令y=0时,x=,
∴直线与x轴交点为(,0),
∵令x=0时,y=-3,
∴直线与y轴交点为(0,-3).
本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征,熟知函数与y轴的交点的横坐标为0,函数与x轴的交点的纵坐标为0是关键.
25、(1)y=x+2;(2)1
【解析】
(1)由图可知、两点的坐标,把两点坐标代入一次函数即可求出的值,进而得出结论;
(2)由点坐标可求出的长再由点坐标可知的长,利用三角形的面积公式即可得出结论.
【详解】
解:
(1)由图可知、,
,
解得,
故此一次函数的解析式为:;
(2)由图可知,
,,
,,
.
答:的面积是1.
此题考查的是待定系数法求一次函数的解析式及一次函数图象上点的坐标特点,先根据一次函数的图象得出、、三点的坐标是解答此题的关键.
26、(1),点的坐标为;(2)函数图象见解析,x<1;(2)点Q的坐标为(-5,0)或(11,0).
【解析】
(1)根据待定系数法求出一次函数解析式,与联立方程组即可求出点P坐标;
(2)画出函数图象,根据图像即可写出当时的取值范围;
(3)根据△PQB的面积为8,求出BQ,即可求出点Q坐标.
【详解】
解:(1)将,代入,
得
解得
,,
∴直线AB解析式为,
一次函数,与正比例函数联立得
解得
点的坐标为;
(2)如图,当时的取值范围是x<1;
(3)∵△PQB的面积为8,
∴,
∴BQ=8,
∴点Q的坐标为(-5,0)或(11,0).
本题考查了待定系数法求函数解析式,一次函数与二元一次方程(组)关系,解题关键是明确两个一次函数解析式组成二元一次方程组的解即是两直线的交点坐标.解第(3)问时注意点Q分类讨论解题.
题号
一
二
三
四
五
总分
得分
x
-2
0
1
y
3
p
0
年龄/岁
人数/个
江苏省徐州市第一中学2025届九上数学开学复习检测试题【含答案】: 这是一份江苏省徐州市第一中学2025届九上数学开学复习检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省徐州市2025届数学九年级第一学期开学预测试题【含答案】: 这是一份江苏省徐州市2025届数学九年级第一学期开学预测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省无锡市名校2024年数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份江苏省无锡市名校2024年数学九年级第一学期开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。