|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年江苏省无锡市江阴市华士片九上数学开学教学质量检测模拟试题【含答案】
    立即下载
    加入资料篮
    2024年江苏省无锡市江阴市华士片九上数学开学教学质量检测模拟试题【含答案】01
    2024年江苏省无锡市江阴市华士片九上数学开学教学质量检测模拟试题【含答案】02
    2024年江苏省无锡市江阴市华士片九上数学开学教学质量检测模拟试题【含答案】03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年江苏省无锡市江阴市华士片九上数学开学教学质量检测模拟试题【含答案】

    展开
    这是一份2024年江苏省无锡市江阴市华士片九上数学开学教学质量检测模拟试题【含答案】,共28页。试卷主要包含了选择题,三象限D.第二,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知二次根式的值为3,那么的值是( )
    A.3B.9C.-3D.3或-3
    2、(4分)下列四个图形中,既是轴对称图形又是中心对称图形的是( )
    A.B.C.D.
    3、(4分)二次根式、、、、、中,最简二次根式有( )个.
    A.1 个B.2 个C.3 个D.4个
    4、(4分)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为( )
    A.12B.14C.16D.24
    5、(4分)坐标平面上,有一线性函数过(-3,4)和(-7,4)两点,则此函数的图象会过( )
    A.第一、二象限B.第一、四象限
    C.第二、三象限D.第二、四象限
    6、(4分)如图,菱形ABCD中,点M是AD的中点,点P由点A出发,沿A→B→C→D作匀速运动,到达点D停止,则△APM的面积y与点P经过的路程x之间的函数关系的图象大致是( )
    A.B.
    C.D.
    7、(4分)反比例函数的图象如图所示,以下结论错误的是( )
    A.
    B.若点在图象上,则
    C.在每个象限内,的值随值的增大而减小
    D.若点,在图象上,则
    8、(4分)如果平行四边形一边长为12cm,那么两条对角线的长度可以是( )
    A.8cm和16cmB.10cm和16cmC.8cm和14cmD.10cm和12cm
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在直角ΔABC中,∠BAC=90°,AC=3,∠B=30°,点D在BC上,若ΔABD为等腰三角形,则BD=___________.
    10、(4分)已知反比例函数 y=的图像都过A(1,3)则m=______.
    11、(4分)如图,在中,,,,为的中点,则______.
    12、(4分)计算的倒数是_____.
    13、(4分)如图,平行四边形中,点为边上一点, 和交于点,已知的面积等于6, 的面积等于4,则四边形的面积等于__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)定义:有一组对边平行,有一个内角是它对角的一半的凸四边形叫做半对角四边形,如图1,直线,点,在直线上,点,在直线上,若,则四边形是半对角四边形.
    (1)如图1,已知,,,若直线,之间的距离为,则AB的长是____,CD的长是______;
    (2)如图2,点是矩形的边上一点,,.若四边形为半对角四边形,求的长;
    (3)如图3,以的顶点为坐标原点,边所在直线为轴,对角线所在直线为轴,建立平面直角坐标系.点是边上一点,满足.
    ①求证:四边形是半对角四边形;
    ②当,时,将四边形向右平移个单位后,恰有两个顶点落在反比例函数的图象上,求的值.
    15、(8分)已知,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,且AE=CF,连接AC,EF.
    (1)如图①,求证:EF//AC;
    (2)如图②,EF与边CD交于点G,连接BG,BE,
    ①求证:△BAE≌△BCG;
    ②若BE=EG=4,求△BAE的面积.
    16、(8分)在平面直角坐标系,直线y=2x+2交x轴于A,交y轴于 D,
    (1)直接写直线y=2x+2与坐标轴所围成的图形的面积
    (2)以AD为边作正方形ABCD,连接AD,P是线段BD上(不与B,D重合)的一点,在BD上截取PG=,过G作GF垂直BD,交BC于F,连接AP.
    问:AP与PF有怎样的数量关系和位置关系?并说明理由;
    (3)在(2)中的正方形中,若∠PAG=45°,试判断线段PD,PG,BG之间有何关系,并说明理由.
    17、(10分)计算:
    (1)
    (2).
    18、(10分)如图,直线与直线交于点A,点A的横坐标为,且直线与x轴交于点B,与y轴交于点D,直线与y轴交于点C.
    (1)求点A的坐标及直线的函数表达式;
    (2)连接,求的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)比较大小:2____3(填“ >、<、或 = ”).
    20、(4分)如图,在矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的点E处,折痕的一端点G在边BC上,BG=1.
    如图1,当折痕的另一端点F在AB边上时,EFG的面积为_____;
    如图2,当折痕的另一端点F在AD边上时,折痕GF的长为_____.
    21、(4分)如图是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…依此类推,若正方形①的边长为64m,则正方形⑨的边长为________cm.
    22、(4分)方程的解是_____.
    23、(4分)已知:,则_______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量保持不变,容器内水量(单位:)与时间(单位:)的部分函数图象如图所示,请结合图象信息解答下列问题:
    (1)求出水管的出水速度;
    (2)求时容器内的水量;
    (3)从关闭进水管起多少分钟时,该容器内的水恰好放完?
    25、(10分)如图,四边形在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数与的图象上,对角线于点,轴于点.
    (1)若,试求的值;
    (2)当,点是线段的中点时,试判断四边形的形状,并说明理由.
    (3)直线与轴相交于点.当四边形为正方形时,请求出的长度.
    26、(12分)化简求值:已知,求的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    试题分析:∵,∴.故选D.
    考点:二次根式的性质.
    2、A
    【解析】
    根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据定义进行分析即可.
    【详解】
    解:A、既是轴对称图形又是中心对称图形,故此选项正确;
    B、是轴对称图形,不是中心对称图形,故此选项错误;
    C、不是轴对称图形,不是中心对称图形,故此选项错误;
    D、不是轴对称图形,是中心对称图形,故此选项错误;
    故选:A.
    此题主要考查了中心对称图形和轴对称图形,关键是掌握中心对称图形和轴对称图形的定义.
    3、C
    【解析】
    直接利用最简二次根式的定义判断得出结论即可.
    【详解】
    在二次根式、、、、、中,最简二次根式有: 、、,共3个
    故选:C
    本题考查了最简二次根式的定义,在判断最简二次根式的过程中要注意:
    (1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;
    (2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.
    4、C
    【解析】
    试题解析:∵解方程x2-7x+12=0
    得:x=3或1
    ∵对角线长为6,3+3=6,不能构成三角形;
    ∴菱形的边长为1.
    ∴菱形ABCD的周长为1×1=2.
    故选C.
    5、A
    【解析】
    根据该线性函数过点(-3,4)和(-7,4)知,该直线是y=4,据此可以判定该函数所经过的象限.
    【详解】
    ∵坐标平面上有一次函数过(-3,4)和(-7,4)两点,
    ∴该函数图象是直线y=4,
    ∴该函数图象经过第一、二象限.
    故选:A.
    本题考查了一次函数的性质.解题时需要了解线性函数的定义:在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k为一次项系数,b为常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量.一次函数在平面直角坐标系上的图象为一条直线.
    6、D
    【解析】
    根据菱形的性质及三角形面积的计算公式可知当点P在BC边上运动时△APM的高不度面积不变,结合选项马上可得出答案为D
    【详解】
    解:当点P在AB上运动时,可知△APM的面积只与高有关,而高与运动路程AP有关,是一次函数关系;当点P在BC上时,△APM的高不会发生变化,所以此时△APM的面积不变;
    当点P在CD上运动时,△APM的面积在不断的变小,并且它与运动的路程是一次函数关系
    综上所述故选:D.
    本题考查了动点问题的函数图象:利用点运动的几何性质列出有关的函数关系式,然后根据函数关系式画出函数图象,注意自变量的取值范围.
    7、D
    【解析】
    根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.
    【详解】
    解:∵反比例函数的图象位于一、三象限,
    ∴k>0故A正确;
    当点M (1,3)在图象上时,代入可得k=3,故B正确;
    当反比例函数的图象位于一、三象限时,在每一象限内,y随x的增大而减小,
    故C正确;
    将A(-1,a),B(2,b)代入中得到,得到a=-k,
    ∵k>0
    ∴a<b,
    故D错误,
    故选:D.
    本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键
    8、B
    【解析】
    根据平行四边形对角线的性质、三角形三边关系定理逐项判断即可得.
    【详解】
    如图,设四边形ABCD是平行四边形,边长为,对角线AC、BD相交于点O

    A、若,则,不满足三角形的三边关系定理,此项不符题意
    B、若,则,满足三角形的三边关系定理,此项符合题意
    C、若,则,不满足三角形的三边关系定理,此项不符题意
    D、若,则,不满足三角形的三边关系定理,此项不符题意
    故选:B.
    本题考查了平行四边形的对角线性质、三角形的三边关系定理,掌握理解平行四边形的性质是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、3或
    【解析】
    分两种情况讨论即可:①BA=BD,②DA=DB.
    【详解】
    解:①如图:
    当AD成为等腰△BAD的底时,BA=BD,∵∠BAC=90°,∠B=30°,AC=3,∴BC=2x3=6,AB=3,∴BD=BA=3;
    ②如图:
    当AB成为等腰△DAB的底边时,DA=DB, 点D在AB的中垂线与斜边BC的交点处,
    ∴∠DAB=∠B=30°,∴∠ADC=∠B+∠DAB=60°, ∵∠C=90°-∠B=60°, ∴△ADC为等边三角形,∴BD=AD=3,
    故答案为3或3.
    本题考查了等腰三角形的性质及线段垂直平分线的性质,关键是灵活运用这些性质.
    10、1.
    【解析】
    把点A(1,1)代入函解析式即可求出m的值.
    【详解】
    解:把点A(1,1)代入函解析式得1=,解得m=1.
    故答案为:1.
    本题考查反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解题的关键.
    11、
    【解析】
    根据勾股定理以及直角三角形斜边上的中线性质即可求出答案.
    【详解】
    ∵∠ABC=90°,BC=4cm,AB=3cm,
    ∴由勾股定理可知:AC=5cm,
    ∵点D为AC的中点,
    ∴BD=AC=cm,
    故答案为:
    本题考查勾股定理,解题的关键是熟练运用勾股定理以及直角三角形斜边上的中线的性质,本题属于基础题型.
    12、
    【解析】
    求出tan30°,根据倒数的概念计算即可.
    【详解】


    则的倒数是,
    故答案为:.
    本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.
    13、11
    【解析】
    由△ABF的面积等于6, △BEF的面积等于4,可得EF:AF=2:3,进而证明△ADF∽△EBF,根据相似三角形的性质可得,继而求出S△ABD=15,再证明△BCD≌△DAB,从而得S△BCD=S△DAB=15,进而利用S四边形CDFE=S△BCD-S△BEF即可求得答案.
    【详解】
    ∵△ABF的面积等于6, △BEF的面积等于4,
    ∴EF:AF=4:6=2:3,
    ∵四边形ABCD是平行四边形,
    ∴AD//BC,
    ∴△ADF∽△EBF,
    ∴,
    ∵S△BEF=4,
    ∴S△ADF=9,
    ∴S△ABD=S△ABF+S△AFD=6+9=15,
    ∵四边形ABCD是平行四边形,
    ∴AB=CD,AD=BC,
    ∵BD是公共边,
    ∴△BCD≌△DAB,
    ∴S△BCD=S△DAB=15,
    ∴S四边形CDFE=S△BCD-S△BEF=15-4=11,
    故答案为11.
    本题考查了平行四边形的性质,相似三角形的判定与性质等,熟练掌握并灵活运用相关知识是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)2;;(2)AD=3;(3)①证明见解析;②的值为为或.
    【解析】
    (1)过点作于点,过点作于点,通过解直角三角形可求出,的长;
    (2)根据半对角四边形的定义可得出,进而可得出,由等角对等边可得出,结合即可求出的长;
    (3)①由平行四边形的性质可得出,,进而可得出,根据等腰三角形的性质及三角形外角的性质可得出,再结合半对角四边形的定义即可证出四边形是半对角四边形;
    ②由平行四边形的性质结合,可得出点,,的坐标,分点,落在反比例函数图象上及点,落在反比例函数图象上两种情况考虑:利用平移的性质及反比例函数图象上点的坐标特征可得出关于的一元一次方程,解之即可得出值,再利用反比例函数图象上点的坐标特征可求出值;同可求出值.综上,此题得解.
    【详解】
    解:(1)如图1,过点作于点,过点作于点.

    ,.
    在中,;
    在中,.
    故答案为:2;.
    (2)如图2,
    四边形为半对角四边形,




    (3)如图3,
    ①证明四边形为平行四边形,
    ,,


    又,
    四边形是半对角四边形;
    ②由题意,可知:点的坐标为,,点的坐标为,,点的坐标为.
    当点,向右平移个单位后落在反比例函数的图象上时,,
    解得:,

    当点,向右平移个单位后落在反比例函数的图象上时,

    解得:,

    综上所述:的值为为或.
    本题考查了解直角三角形、等腰三角形的性质、三角形外角的性质、平行四边形的性质、反比例函数图象上点的坐标特征以及解一元一次方程,解题的关键是:(1)通过解直角三角形求出,的长;(2)利用半对角四边形的定义及矩形的性质,求出;(3)①利用等腰三角形的性质、三角形外角的性质以及平行四边形的性质,找出;②分点,落在反比例函数图象上和点,落在反比例函数图象上两种情况,求出的值.
    15、(1)见解析;(1)①见解析;②△BAE的面积为1.
    【解析】
    (1)利用平行四边形的判定及其性质定理即可解决问题;
    (1)①根据SAS可以证明两三角形全等;
    ②先根据等腰直角△DEG计算DE的长,设AE=a,表示正方形的边长,根据勾股定理列式,可得+a=4,最后根据三角形面积公式,整体代入可得结论.
    【详解】
    (1)证明:∵正方形ABCD
    ∴AE//CF,
    ∵AE=CF
    ∴AEFC是平行四边形
    ∴EF//AC.
    (1)①如图,
    ∵四边形ABCD是正方形,且EF∥AC,
    ∴∠DEG=∠DAC=45°,∠DGE=∠DCA=45°;
    ∵AD∥BF,
    ∴∠CFG=∠DEG=45°,
    ∵∠CGF=∠DGE=45°,
    ∴∠CGF=∠CFG,
    ∴CG=CF;
    ∵AE=CF,
    ∴AE=CG;
    在△ABE与△CBG中,
    ∵AE=CG,∠BAE=∠BCG,AB=BC
    ∴△ABE≌CBG(SAS);
    ②由①知△DEG是等腰直角三角形,
    ∵EG=4,
    ∴DE=,
    设AE=a,则AB=AD=a+,
    Rt△ABE中,由勾股定理得:AB1+AE1=BE1,
    ∴(a+)1+a1=41,
    ∴a1+a=4,
    ∴S△ABE=AB•AE=a(a+)= (a1+a)=×4=1.
    本题是四边形的综合题,本题难度适中,考查了正方形的性质、全等三角形的判定及其应用问题;解题的关键是熟练掌握正方形的性质,结合等腰直角三角形的性质来解决问题;并利用未知数结合整体代入解决问题.
    16、(1)1;(1)AP=PF且AP⊥PF,理由见解析;(3)PD1+BG1=PG1,理由见解析
    【解析】
    (1)先根据一次函数解析式求出A,D的坐标,根据三角形的面积公式即可求解;
    (1)过点A作AH⊥DB,先计算出AD=,根据正方形的性质得到BD=,AH=DH=BD=,由PG=,得到DP+BG=,则PH=BG,可证得Rt△APH≌Rt△PFG,即可得到AP=PF且AP⊥PF;
    (3)把△AGB绕点A点逆时针旋转90°得到△AMD,可得∠MDA=∠ABG=45°,DM=BG, ∠MAD=∠BAG,AM=AG,则∠MDP=90°,根据勾股定理有DP1+BG1=PM1,由∠PAG=45°,可得∠DAP+∠BAG=45°,即∠MAP=45°,易证得△AMP≌△AGP,得到MP=PG,即可DP1+BG1=PM1.
    【详解】
    (1)∵直线y=1x+1交x轴于A,交y轴于 D,
    令x=0,解得y=1,∴D(0,1)
    令y=0,解得x=-1,∴A(-1,0)
    ∴AO=1,DO=1,
    ∴直线y=1x+1与坐标轴所围成的图形△AOD=×1×1=1;
    (1)AP=PF且AP⊥PF,理由如下:
    过点A作AH⊥DB,如图,
    ∵A(-1,0),D(0,1)
    ∴AD===AB,
    ∵四边形ABCD是正方形
    ∴BD==,
    ∴AH=DH=BD=,
    而PG=,
    ∴DP+BG=,
    而DH=DP+PH=
    ∴PH=BG,
    ∵∠GBF=45°
    ∴BG=GF=HP
    ∴Rt△APH≌Rt△PFG,
    ∴AP=PF, ∠PAH=∠PFG
    ∴∠APH+∠GPF=90°即AP⊥PF;
    (3)PD1+BG1=PG1,理由如下:
    如图,把△AGB绕点A点逆时针旋转90°得到△AMD,连接MP,
    ∴∠MDA=∠ABG=45°,DM=BG, ∠MAD=∠BAG,AM=AG,
    ∴∠MDP=90°,
    ∴DP1+BG1=PM1,
    又∵∠PAG=45°,
    ∴∠DAP+∠BAG=45°,
    ∴∠MAD+∠DAP =45°,即∠MAP=45°,
    而AM=AG,
    ∴△AMP≌△AGP,
    ∴MP=PG,
    ∴PD1+BG1=PG1
    此题主要考查一次函数与正方形的性质综合,解题的关键是熟知一次函数的图像与性质、正方形的性质、全等三角形的判定与性质.
    17、 (1)28﹣10;(2)3a﹣(+3)b.
    【解析】
    (1)利用完全平方公式计算;
    (2)先把各二次根式化简为最简二次根式,然后合并即可.
    【详解】
    (1)原式=3﹣10+25=28﹣10;
    (2)原式=3a+b﹣2b﹣3b
    =3a﹣(+3)b.
    此题考查二次根式的混合运算,解题关键在于掌握运算法则
    18、 (1) ;(2)1.
    【解析】
    (1)将x=-1代入得出纵坐标,从而得到点A的坐标;再用待定系数法求得直线的函数表达式;
    (2)连接,先根据解析式求得B,C,D的坐标,得出BO,CD的长,然后利用割补法求的面积,.
    【详解】
    解:(1)因为点A在直线上,且横坐标为,所以点A的纵坐标为,所以点A的坐标为.
    因为直线过点A,所以将代入,得,解得,所以直线的函数表达式为.
    (2)如图,连接BC,
    由直线,的函数表达式,易得点B的坐标为,点D的坐标为,点C的坐标为,所以.
    所以.
    本题主要考查了两直线相交问题,要注意利用一次函数的特点,列出方程,求出未知数再求得解析式;求三角形的面积时找出高和底边长,对不规则的三角形面积可以使用割补法等方法.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、<
    【解析】
    试题分析:将两式进行平方可得:=12,=18,因为12<18,则<.
    20、25 4
    【解析】
    (1)先利用翻折变换的性质以及勾股定理求出AE的长,进而利用勾股定理求出AF和EF的长,利用三角形的面积公式即可得出△EFG的面积;
    (2)首先证明四边形BGEF是平行四边形,再利用BG=EG,得出四边形BGEF是菱形,再利用菱形性质求出FG的长.
    【详解】
    解:(1)如图1过G作GH⊥AD
    在Rt△GHE中,GE=BG=1,GH=8
    所以,EH==6,
    设AF=x,则


    解得:x=3
    ∴AF=3,BF=EF=5
    故△EFG的面积为:×5×1=25;
    (2)如图2,过F作FK⊥BG于K
    ∵四边形ABCD是矩形
    ∴,
    ∴四边形BGEF是平行四边形
    由对称性知,BG=EG
    ∴四边形BGEF是菱形
    ∴BG=BF=1,AB=8,AF=6
    ∴KG=4
    ∴FG=.
    本题主要考查了翻折,勾股定理,矩形的性质,平行四边形和菱形的性质与判定,熟练掌握相关几何证明方法是解决本题的关键.
    21、4
    【解析】
    第一个正方形的边长为64cm,则第二个正方形的边长为64×cm,第三个正方形的边长为64×()2cm,依此类推,通过找规律求解.
    【详解】
    根据题意:第一个正方形的边长为64cm;
    第二个正方形的边长为:64×=32cm;
    第三个正方形的边长为:64×()2cm,

    此后,每一个正方形的边长是上一个正方形的边长的 ,
    所以第9个正方形的边长为64×()9-1=4cm,
    故答案为4
    本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.
    22、x=﹣1.
    【解析】
    把方程两边平方后求解,注意检验.
    【详解】
    把方程两边平方得x+2=x2,
    整理得(x﹣2)(x+1)=0,
    解得:x=2或﹣1,
    经检验,x=﹣1是原方程的解.
    故本题答案为:x=﹣1.
    本题考查无理方程的求法,注意无理方程需验根.
    23、
    【解析】
    由题意设,再代入代数式求值即可.
    【详解】
    由题意设,,则
    考查了代数式求值,本题属于基础应用题,只需学生熟练掌握代数式求值的方法,即可完成.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2);(3)
    【解析】
    (1)设出水管的出水速度为,根据10分钟内的进水量-10分钟内的出水量=20升列方程求解即可;
    (2)设当时,与的函数解析式为,用待定系数法求出函数解析式,再令x=8计算即可;
    (3)用容器的储水量30升除以(1)中求出的出水速度即可.
    【详解】
    解:(1)设出水管的出水速度为.

    解得.
    答:出水管的出水速度为.
    (2)设当时,与的函数解析式为.
    将点,代入,得,解得.
    ∴.
    ∴当时,.
    答:时容器内的水量为.
    (3).
    答:从关闭进水管起时,该容器内的水恰好放完.
    本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
    25、(1)1;(2)(2)四边形ABCD为菱形,理由见解析;(3)
    【解析】
    (1)由点N的坐标及CN的长度可得出点C的坐标,再利用反比例函数图象上点的坐标特征可求出点n的值;
    (2)利用反比例函数图象上点的坐标特征可得出点A,C的坐标,结合点P为线段AC的中点可得出点P的坐标,利用反比例函数图象上点的坐标特征可得出点B,D的坐标,结合点P的坐标可得出BP=DP,利用“对角线互相垂直平分的四边形为菱形”可证出四边形ABCD为菱形;
    (3)利用正方形的性质可得出AC=BD且点P为线段AC及BD的中点,利用反比例函数图象上点的坐标特征可求出点A,C,B,D的坐标,结合AC=BD可得出关于n的方程,解之即可得出结论.
    【详解】
    (1)∵点N的坐标为(2,0),CN⊥x轴,且,
    ∴点C的坐标为(2,).
    ∵点C在反比例函数的图象上,
    ∴n=2×=1.
    (2)四边形ABCD为菱形,理由如下:
    当n=2时,.
    当x=2时,,
    ∴点C的坐标为(2,1),点A的坐标为(2,4).
    ∵点P是线段AC的中点,
    ∴点P的坐标为(2,).
    当y=时,,
    解得:,
    ∴点B的坐标为,点D的坐标为,
    ∴,
    ∴BP=DP.
    又∵AP=CP,AC⊥BD,
    ∴四边形ABCD为菱形.
    (3)∵四边形ABCD为正方形,
    ∴AC=BD,且点P为线段AC及BD的中点.
    当x=2时,y1=n,y2=2n,
    ∴点A的坐标为(2,2n),点C的坐标为(2,n),AC=n,
    ∴点P的坐标为.
    同理,点B的坐标为,点D的坐标为,.
    ∵AC=BD,
    ∴,
    ∴,
    ∴点A的坐标为,点B的坐标为.
    设直线AB的解析式为y=kx+b(k≠0),
    将A,B代入y=kx+b,得:,
    解得:,
    ∴直线AB的解析式为y=x+.
    当x=0时,y=x+,
    ∴点E的坐标为(0,),
    ∴当四边形ABCD为正方形时,OE的长度为.
    本题考查了反比例函数图象上点的坐标特征、菱形的判定以及正方形的性质,解题的关键是:(1)根据点C的坐标,利用反比例函数图象上点的坐标特征求出n值;(2)利用“对角线互相垂直平分的四边形为菱形”,证出四边形ABCD为菱形;(3)利用正方形的性质及反比例函数图象上点的坐标特征,找出关于n的方程.
    26、;14
    【解析】
    原式括号中利用完全平方公式,单项式乘以多项式法则计算,再利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.
    【详解】
    =
    =
    =
    ∴原式
    此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.
    题号





    总分
    得分
    相关试卷

    2024年江苏省江阴市华士片、澄东片数学九上开学质量检测模拟试题【含答案】: 这是一份2024年江苏省江阴市华士片、澄东片数学九上开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省江阴市华士片、澄东片2023-2024学年数学九上期末教学质量检测模拟试题含答案: 这是一份江苏省江阴市华士片、澄东片2023-2024学年数学九上期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,如图,在中,,,于点,关于抛物线y=-3等内容,欢迎下载使用。

    江苏省无锡市江阴市华士片2023-2024学年数学九年级第一学期期末检测模拟试题含答案: 这是一份江苏省无锡市江阴市华士片2023-2024学年数学九年级第一学期期末检测模拟试题含答案,共8页。试卷主要包含了方程x等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map