终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省泰州市靖江市实验学校2025届九年级数学第一学期开学统考模拟试题【含答案】

    立即下载
    加入资料篮
    江苏省泰州市靖江市实验学校2025届九年级数学第一学期开学统考模拟试题【含答案】第1页
    江苏省泰州市靖江市实验学校2025届九年级数学第一学期开学统考模拟试题【含答案】第2页
    江苏省泰州市靖江市实验学校2025届九年级数学第一学期开学统考模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省泰州市靖江市实验学校2025届九年级数学第一学期开学统考模拟试题【含答案】

    展开

    这是一份江苏省泰州市靖江市实验学校2025届九年级数学第一学期开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如果三条线段的长a,b,c满足a2=c2-b2,则这三条线段组成的三角形是( )
    A.锐角三角形B.直角三角形C.钝角三角形D.无法确定
    2、(4分)四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是( )
    A.AB=CDB.AC=BDC.AC⊥BDD.AD=BC
    3、(4分)将正方形和按如图所示方式放置,点和点在直线上点,在轴上,若平移直线使之经过点,则直线向右平移的距离为( ).
    A.B.C.D.
    4、(4分)若,,则( )
    A.B.C.D.5
    5、(4分)若一个直角三角形的两边长为12、13,则第三边长为( )
    A.5B.17C.5或17D.5或
    6、(4分)以下方程中,一定是一元二次方程的是
    A.B.
    C.D.
    7、(4分)下列四组线段中,可以构成直角三角形的是( )
    A.1,2,3B.4,5,6C.9,12,15D.
    8、(4分)下列二次根式计算正确的是( )
    A.-=1B.+=C.×=D.÷=
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,线段AC的垂直平分线DE交AC于D交BC于E,则△ABE的周长为_____.
    10、(4分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在AB上,连接B′C,若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为____.
    11、(4分)已知等腰三角形有两条边分别是3和7,则这个三角形的周长是_______.
    12、(4分)某市规定了每月用水不超过l8立方米和超过18立方米两种不同的收费标准,该市用户每月应交水费y(元)是用水x(立方米)的函数,其图象如图所示.已知小丽家3月份交了水费102元,则小丽家这个月用水量为_____立方米.
    13、(4分)己知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
    (1)该商场服装营业员的人数为 ,图①中m的值为 ;
    (2)求统计的这组销售额数据的平均数、众数和中位数.
    15、(8分)如图①,在平面直角坐标系中,直线y=−12x+2与交坐标轴于A,B两点.以AB为斜边在第一象限作等腰直角三角形ABC,C为直角顶点,连接OC.
    (1)求线段AB的长度
    (2)求直线BC的解析式;
    (3)如图②,将线段AB绕B点沿顺时针方向旋转至BD,且,直线DO交直线y=x+3于P点,求P点坐标.
    16、(8分)在正方形ABCD中,点E是射线AC上一点,点F是正方形ABCD外角平分线CM上一点,且CF=AE,连接BE,EF.
    (1)如图1,当E是线段AC的中点时,直接写出BE与EF的数量关系;
    (2)当点E不是线段AC的中点,其它条件不变时,请你在图2中补全图形,判断(1)中的结论是否成立,并证明你的结论;
    (3)当点B,E,F在一条直线上时,求∠CBE的度数.(直接写出结果即可)
    17、(10分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
    (Ⅰ)图1中a的值为 ;
    (Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;
    (Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
    18、(10分)某网络公司推出了一系列上网包月业务,其中的一项业务是10M“40元包200小时”,且其中每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.
    (1)当x≥200时,求y与x之间的函数关系式
    (2)若小刚家10月份上网180小时,则他家应付多少元上网费?
    (3)若小明家10月份上网费用为52元,则他家该月的上网时间是多少小时?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M是BC边上一个动点,联结AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转恰好至△NGF.给出以下三个结论:①∠AND=∠MPC; ②△ABM≌△NGF;③S四边形AMFN=a1+b1.其中正确的结论是_____(请填写序号).
    20、(4分)若关于的分式方程有解,则的取值范围是_______.
    21、(4分)如图,四边形ABCD是矩形,对角线AC、BD相交于点O,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是_________.
    22、(4分)若ab=﹣2,a+b=1,则代数式a2b+ab2的值等于_____.
    23、(4分)如图,A、B的坐标分别为(1,0)、(0,2),若线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a-b的值为__.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)学生小明、小华为了解本校八年级学生每周上网的时间,各自进行了抽样调查.小明调查了八年级信息技术兴趣小组中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5h;小华从全体320名八年级学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2h.小明与小华整理各自样本数据,如表所示.
    (每组可含最低值,不含最高值)
    请根据上述信息,回答下列问题:
    (1)你认为哪位学生抽取的样本具有代表性? _____.估计该校全体八年级学生平均每周上网时间为_____h;
    (2)在具有代表性的样本中,中位数所在的时间段是_____h/周;
    (3)专家建议每周上网2h以上(含2h)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体八年级学生中有多少名学生应适当减少上网的时间?
    25、(10分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V(m3)的反比例函数,且当V=0.8m3时,P=120kPa。
    (1)求P与V之间的函数表达式;
    (2)当气球内的气压大于100kPa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于多少?
    26、(12分)解方程:(1);(2);(3)x3290
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据“勾股定理的逆定理”结合已知条件分析判断即可.
    【详解】
    解:∵三条线段的长a,b,c满足a2=c2-b2,
    ∴a2+b2=c2,
    ∴这三条线段组成的三角形是直角三角形
    故选B.
    本题考查熟知“若三角形的三边长分别为a、b、c,且满足a2+b2=c2,则该三角形是以c为斜边的直角三角形”是解答本题的关键.
    2、C
    【解析】
    由已知条件得出四边形ABCD是平行四边形,再由对角线互相垂直,即可得出四边形ABCD是菱形.
    【详解】
    如图所示:
    需要添加的条件是AC⊥BD;理由如下:
    ∵四边形ABCD的对角线互相平分,
    ∴四边形ABCD是平行四边形,
    ∵AC⊥BD,
    ∴平行四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形);
    故选:C.
    考查了平行四边形的判定方法、菱形的判定方法;熟练掌握平行四边形和菱形的判定方法,并能进行推理论证是解决问题的关键.
    3、C
    【解析】
    已知点和正方形,即可得C(1,0),代入可得y=2,所以(1,2),又因正方形 ,可得(3,2),设平移后的直线设为,将代入可求得,即直线向右平移的距离为.故选.
    4、C
    【解析】
    依据,2y=3z即可得到x=y,z=y,代式化简求值即可.
    【详解】
    解:∵,,
    ∴x=y,z=y,
    ∴= -5.
    故选:C.
    本题主要考分式的求值,用含y的代数式表示x和z是解决问题的关键.
    5、D
    【解析】
    根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.
    【详解】
    当12,13为两条直角边时,
    第三边==,
    当13,12分别是斜边和一直角边时,
    第三边==1.
    故选D.
    本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.
    6、B
    【解析】
    根据一元二次方程的定义依次判断即可.
    【详解】
    解:A、是二元一次方程,故选项A不符合题意;
    B、是一元二次方程,故选项B符合题意;
    C、m=﹣1时是一元一次方程,故选项C不符合题意;
    D、化简后为x+4=0,是一元一次方程,故选项D不符合题意;
    故选:B.
    此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.
    7、C
    【解析】
    根据勾股定理的逆定理,看较小两条边的平方和是否等于最长边的平方即可判断.
    【详解】
    A、12+22≠32,不能构成直角三角形,故不符合题意;
    B、42+52≠62,不能构成直角三角形,故不符合题意;
    C、92+122=152,能构成直角三角形,故符合题意;
    D、,不能构成直角三角形,故不符合题意,
    故选C.
    本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
    8、C
    【解析】
    本题需根据二次根式的乘除法和加减法分别进行判断,即可求出正确答案.
    【详解】
    A、∵-≠,故本选项错误;
    B、∵+≠,故本选项错误;
    C、∵×=.故本选项正确;
    D、÷=≠,故本选项错误;
    故选C.
    本题主要考查了二次根式的乘除法和加减法,在解题时要注意知识的综合应用是本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据勾股定理求出BC,根据线段垂直平分线得出AE=CE,求出△ABE的周长=AB+BC,代入求出即可.
    【详解】
    解:在△ABC中,∠B=90°,AB=3,AC=5,由勾股定理得:BC=4,
    ∵线段AC的垂直平分线DE,
    ∴AE=EC,
    ∴△ABE的周长为AB+BE+AE=AB+BE+CE=AB+BC=3+4=1,
    故答案为1.
    本题主要考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是本题的关键.
    10、3
    【解析】
    根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.
    【详解】
    ∵∠ACB=∠AC′B′=90°,AC=BC=3,
    ∴AB=3,∠CAB=45°,
    ∵△ABC和△A′B′C′全等,
    ∴∠C′AB′=∠CAB=45°,AB′=AB=3,
    ∴∠CAB′=90°,
    ∴B′C==3,
    故答案为3.
    本题考查的是勾股定理的应用、等腰直角三角形的性质,解题关键在于利用勾股定理计算
    11、17
    【解析】
    根据等腰三角形的可得第三条边为3或7,再根据三角形的三边性质即可得出三边的长度,故可求出三角形的周长.
    【详解】
    依题意得第三条边为3或7,又3+3<7,故第三条边不能为3,
    故三边长为3,7,7故周长为17.
    此题主要考查等腰三角形的性质,解题的关键是熟知三角形的构成条件.
    12、1
    【解析】
    根据题意和函数图象中的数据可以求得当x>18时对应的函数解析式,根据102>54可知,小丽家用水量超过18立方米,从而可以解答本题.
    【详解】
    解:设当x>18时的函数解析式为y=kx+b,
    图象过(18,54),(28,94)
    ∴,得
    即当x>18时的函数解析式为:y=4x-18,
    ∵102>54,
    ∴小丽家用水量超过18立方米,
    ∴当y=102时,102=4x-18,得x=1,
    故答案为:1.
    本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
    13、
    【解析】
    分析:根据菱形的性质结合勾股定理可求出较短的对角线的长,再根据菱形的面积公式即可求出该菱形的面积.
    详解:依照题意画出图形,如图所示.
    在Rt△AOB中,AB=2,OB=,
    ∴OA==1,
    ∴AC=2OA=2,
    ∴S菱形ABCD=AC•BD=×2×2=2.
    故答案为2.
    点睛:本题考查了菱形的性质以及勾股定理,根据菱形的性质结合勾股定理求出较短的对角线的长是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)25;28;(2)平均数:1.2;众数:3;中位数:1.
    【解析】
    (1)观察统计图可得,该商场服装部营业员人数为2+5+7+8+3=25人,m%=1-32%-12%-8%-20%=28%,即m=28;
    (2)计算出所有营业员的销售总额除以营业员的总人数即可的平均数;观察统计图,根据众数、中位数的定义即可得答案.
    【详解】
    解:(1)根据条形图2+5+7+8+3=25(人),
    m=100-20-32-12-8=28;
    故答案为:25;28;
    (2)观察条形统计图,

    ∴这组数据的平均数是1.2.
    ∵在这组数据中,3 出现了8次,出现的次数最多,
    ∴这组数据的众数是3.
    ∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是1,
    ∴这组数据的中位数是1.
    此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
    15、(1);(2);(3)P点的坐标是.
    【解析】
    (1)先确定出点A,B坐标,利用勾股定理计算即可;
    (2)如图1中,作CE⊥x轴于E,作CF⊥y轴于F,进而判断出,即可判断出四边形OECF是正方形,求出点C坐标即可解决问题.
    (3)如图2中,先判断出点B是AM的中点,进而求出M的坐标,即可求出DP的解析式,联立成方程组求解即可得出结论.
    【详解】
    解:(1)∵直线交坐标轴于A、B两点.
    ∴令,,∴B点的坐标是,

    令,,∴A点的坐标是,

    根据勾股定理得:.
    (2)如图,作CE⊥x轴于E,作CF⊥y轴于F,
    ∴四边形OECF是矩形.
    ∵是等腰直角三角形,
    ,,,

    ,,.
    ∴四边形OECF是正方形,

    ,,.
    ∴C点坐标
    设直线BC的解析式为:,
    ∴将、代入得:,
    解得:,.
    ∴直线BC的解析式为:.
    (3)延长AB交DP于M,
    由旋转知,BD=AB,
    ∴∠BAD=∠BDA,
    ∵AD⊥DP,
    ∴∠ADP=90°,
    ∴∠BDA+∠BDM=90°,∠BAD+∠AMD=90°,
    ∴∠AMD=∠BDM,
    ∴BD=BM,
    ∴BM=AB,
    ∴点B是AM的中点,
    ∵A(4,0),B(0,2),
    ∴M(−4,4),
    ∴直线DP的解析式为y=−x,
    ∵直线DO交直线y=x+3于P点,
    将直线与联立得:
    解得:
    ∴P点的坐标是.
    此题是一次函数综合题,主要考查了待定系数法求函数解析式,一次函数的图像和性质,全等三角形的判定和性质,等腰三角形的判定和性质等,解(2)的关键是求出点C的坐标,解(3)的关键是证明点B是AM的中点,求出直线DP的解析式.
    16、(1)EF=BE;(2)EF=BE,理由见解析;(3)当B,E,F在一条直线上时,∠CBE=22.5°
    【解析】
    (1)证明△ECF是等腰直角三角形即可;
    (2)图形如图2所示:(1)中的结论仍然成立,即EF=BE.只要证明BE=DE,△DEF是等腰直角三角形即可;
    (3)图形如图2所示:(1)中的结论仍然成立,即EF=BE.只要证明∠CBF=∠CFB即可.
    【详解】
    解:(1)如图1中,结论:EF=BE.
    理由:
    ∵四边形ABCD是正方形,
    ∴BA=BC,∠ABC=∠BCD=90°,∠ACD=∠ACB=45°,
    ∵AE=EC,
    ∴BE=AE=EC,
    ∵CM平分∠DCG,
    ∴∠DCF=45°,
    ∴∠ECF=90°,
    ∵CF=AE,
    ∴EC=CF,
    ∴EF=EC,
    ∴EF=BE.
    (2)图形如图2所示:(1)中的结论仍然成立,即EF=BE.
    理由:连接ED,DF.
    由正方形的对称性可知,BE=DE,∠CBE=∠CDE
    ∵正方形ABCD,
    ∴AB=CD,∠BAC=45°,
    ∵点F是正方形ABCD外角平分线CM上一点,
    ∴∠DCF=45°,
    ∴∠BAC=∠DCF,
    由∵CF=AE,
    ∴△ABE≌△CDF(SAS),
    ∴BE=DF,∠ABE=∠CDF,
    ∴DE=DF,
    又∵∠ABE+∠CBE=90°,
    ∴∠CDF+∠CDE=90°,
    即∠EDF=90°,
    ∴△EDF是等腰直角三角形
    ∴EF=DE,
    ∴EF=DE.
    (3)如图3中,当点B,E,F在一条直线上时,∠图形如图2所示:(1)中的结论仍然成立,即EF=BE.CBE=22.5°.
    理由:∵∠ECF=∠EDF=90°,
    ∴E,C,F,D四点共圆,
    ∴∠BFC=∠CDE,
    ∵∠ABE=∠ADE,∠ABC=∠ADC=90°,
    ∴∠CDE=∠CBE,
    ∴∠CBF=∠CFB,
    ∵∠FCG=∠CBF+∠CFB=45°,
    ∴∠CBE=22.5°.
    本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,三角形的外角的性质等知识,解题的关键是正确寻找全等三角形解决问题.
    17、 (1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.1;(3)初赛成绩为1.65 m的运动员能进入复赛.
    【解析】
    试题分析:(1)、用整体1减去其它所占的百分比,即可求出a的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.
    试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%; 则a的值是25;
    (2)、观察条形统计图得:=1.61;
    ∵在这组数据中,1.65出现了6次,出现的次数最多, ∴这组数据的众数是1.65;
    将这组数据从小到大排列为,其中处于中间的两个数都是1.1, 则这组数据的中位数是1.1.
    (3)、能; ∵共有20个人,中位数是第10、11个数的平均数,
    ∴根据中位数可以判断出能否进入前9名;
    ∵1.65m>1.1m, ∴能进入复赛
    考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数
    18、(1)y=x-260;(2)小刚家10月份上网180小时应交费40元;(3)他家该月的上网时间是208小时.
    【解析】
    (1)用待定系数法求解;(2)根据函数图象求解;(3)(把y=52代入y=x-260中可得.
    【详解】
    (1)设当x≥200时,y与x之间的函数关系式为y=kx+b,
    ∵图象经过(200,40)(220,70),
    ∴,解得,
    ∴此时函数表达式为y=x-260;
    (2)根据图象可得小刚家10月份上网180小时应交费40元;
    (3)把y=52代入y=x-260中得:x=208,
    答:他家该月的上网时间是208小时.
    考核知识点:一次函数的应用.数形结合分析问题是关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、①②③.
    【解析】
    ①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∴∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,可知∠DAM=∠AND,②根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM≌△NGF;③由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是正方形,于是得到S四边形AMFN=AM1=a1+b1;
    【详解】
    ①∵四边形ABCD是正方形,
    ∴∠BAD=∠ADC=∠B=90°,
    ∴∠BAM+∠DAM=90°,
    ∵将△ABM绕点A旋转至△ADN,
    ∴∠NAD=∠BAM,∠AND=∠AMB,
    ∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,
    ∴∠DAM=∠AND,故①正确,
    ②∵将△MEF绕点F旋转至△NGF,
    ∴GN=ME,
    ∵AB=a,ME=a,
    ∴AB=ME=NG,
    在△ABM与△NGF中,AB=NG=a,∠B=∠NGF=90°,GF=BM=b,
    ∴△ABM≌△NGF;故②正确;
    ③∵将△ABM绕点A旋转至△ADN,
    ∴AM=AN,
    ∵将△MEF绕点F旋转至△NGF,
    ∴NF=MF,
    ∵△ABM≌△NGF,
    ∴AM=NF,
    ∴四边形AMFN是矩形,
    ∵∠BAM=∠NAD,
    ∴∠BAM+DAM=∠NAD+∠DAN=90°,
    ∴∠NAM=90°,
    ∴四边形AMFN是正方形,
    ∵在Rt△ABM中,a1+b1=AM1,
    ∴S四边形AMFN=AM1=a1+b1;故③正确
    故答案为①②③.
    本题考查了全等三角形的判定和性质,正方形的性质,旋转的性质,正确的理解题意是解题的关键.
    20、
    【解析】
    分式方程去分母转化为整式方程,表示出分式方程的解,确定出m的范围即可.
    【详解】
    解:,
    去分母,得:,
    整理得:,
    显然,当时,方程无解,
    ∴;
    当时,,
    ∴,
    解得:;
    ∴的取值范围是:;
    故答案为:.
    此题考查了分式方程的解,始终注意分母不为0这个条件.
    21、AC⊥BD
    【解析】
    对角线互相垂直的矩形是正方形,根据正方形的判定定理添加即可.
    【详解】
    ∵四边形ABCD是矩形,对角线AC、BD相交于点O,
    ∴当AC⊥BD时,四边形ABCD是正方形,
    故答案为:AC⊥BD.
    此题考查正方形的判定定理,熟记定理并运用解题是关键.
    22、﹣1
    【解析】
    直接将要求值的代数式提取公因式ab,进而把已知数据代入求出答案.
    【详解】
    ∵ab=-1,a+b=1,
    ∴a1b+ab1=ab(a+b)
    =-1×1
    =-1.
    故答案为-1.
    此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.
    23、1.
    【解析】
    利用平移变换的性质即可解决问题;
    【详解】
    观察图象可知,线段AB向左平移1个单位,再向上平移1个单位得到线段A1B1,
    ∴a=1,b=1,
    ∴a-b=1,
    故答案为:1.
    本题考查坐标与图形的变化-平移,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
    二、解答题(本大题共3个小题,共30分)
    24、小华1.20~1
    【解析】
    试题分析:(1)小明抽取的样本太片面,信息技术兴趣小组的学生上网时间相对较多,所以不具代表性,而小华抽取的样本是随机抽取具有代表性,所以估计该校全体八年级学生平均每周上网时间为1.2小时;
    (2)根据中位数的概念找出第20和第21名同学所在的上网时间段即可;
    (3)先求出随机调查的40名学生中应当减少上网时间的学生的频率,再乘以320求出学生人数即可.
    试题解析:(1)小明抽取的样本太片面,信息技术兴趣小组的学生上网时间相对较多,所以不具代表性,而小华抽取的样本是随机抽取具有代表性.
    故答案为小华;1.2.
    (2)由图表可知第20和第21名同学所在的上网时间段为:0∼1h/周,
    所以中位数为:0∼1h/周.
    故答案为0∼1.
    (3)随机调查的40名学生中应当减少上网时间的学生的频率为:
    故该校全体八年级学生中应当减少上网时间的人数为:320×0.2=64(人).
    答:该校全体八年级学生中应当减少上网时间的人数为64人.
    25、(1)P与V之间的函数表达式为;(2)为确保气球不爆炸,气球的体积应不小于0.96
    【解析】
    (1)设气球内气体的气压P(kPa)和气体体积V(m3)的反比例函数为,将V=0.8时,P=120,代入求出F,再将F的值代入,可得P与V之间的函数表达式。
    (2)为确保气球不爆炸,则 时,即,解出不等式解集即可。
    【详解】
    解:(1)设P与V之间的函数表达式为
    当V=0.8时,P=120,
    所以
    ∴F=96
    ∴P与V之间的函数表达式为
    (2)当 时,

    ∴为确保气球不爆炸,气球的体积应不小于0.96
    答(1)P与V之间的函数表达式为;(2)为确保气球不爆炸,气球的体积应不小于0.96
    现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
    26、(1);(2);(3)x1=0,x2=6.
    【解析】
    (1)先对中的分母通分,再进行移项,系数化为1,即可得到答案;
    (2)先将变为,再进行加减运算,系数化为1,即可得到答案;
    (3)先对x3290进行去括号运算,再进行减法运算,移项即可得到答案.
    【详解】
    (1)
    经检验为原分式方程的根;
    (2)
    经检验为原方程的根;
    (3)x3290
    x26x+990
    x26x=0
    x(x-6)=0,
    x1=0,x2=6.
    本题考查分式方程,因式分解法解一元二次方程,解题的关键是掌握分式方程和一元二次方程的基本解题步骤,注意解分式方程要检验.
    题号





    总分
    得分
    时间段(h/周)
    小明抽样人数
    小华抽样人数
    0~1
    6
    22
    1~2
    10
    10
    2~3
    16
    6
    3~4
    8
    2

    相关试卷

    江苏省泰州市高港实验学校2025届九上数学开学统考模拟试题【含答案】:

    这是一份江苏省泰州市高港实验学校2025届九上数学开学统考模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省靖江市实验学校2025届九上数学开学联考模拟试题【含答案】:

    这是一份江苏省靖江市实验学校2025届九上数学开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届江苏省靖江市实验学校天水分校数学九年级第一学期开学复习检测模拟试题【含答案】:

    这是一份2025届江苏省靖江市实验学校天水分校数学九年级第一学期开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map