江苏省泰州市高港实验学校2025届九上数学开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)要比较两名同学共六次数学测试中谁的成绩比较稳定,应选用的统计量为( )
A.中位数 B.方差 C.平均数 D.众数
2、(4分)计算的的结果是( )
A.B.C.4D.16
3、(4分)如图,平行四边形,对角线交于点,下列选项错误的是( )
A.互相平分
B.时,平行四边形为矩形
C.时,平行四边形为菱形
D.时,平行四边形为正方形
4、(4分)在平面直角坐标系内,点在第三象限,则m的取值范围是
A.B.C.D.
5、(4分)如图,在矩形ABCD中,AB=2,∠AOD=120°,则对角线AC等于( )
A.3B.4C.5D.6
6、(4分)已知一组数据3,a,4,5的众数为4,则这组数据的平均数为( )
A.3B.4C.5D.6
7、(4分)如图,在△ABC中,点D为BC的中点,连接AD,过点C作CE∥AB交AD的延长线于点E,下列说法错误的是( )
A.△ABD≌△ECD
B.连接BE,四边形ABEC为平行四边形
C.DA=DE
D.CE=CA
8、(4分)某校九年级(1)班全体学生2018年初中毕业体育考试的成绩统计如表:
根据表中的信息判断,下列结论中错误的是( )
A.该班一共有45名同学
B.该班学生这次考试成绩的众数是28
C.该班学生这次考试成绩的平均数是25
D.该班学生这次考试成绩的中位数是28
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若不等式的正整数解是,则的取值范围是____.
10、(4分)已知a﹣2b=10,则代数式a2﹣4ab+4b2的值为___.
11、(4分)已知、满足方程组,则的值为__________.
12、(4分)如图是我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形拼成的大正方形.如果图中大、小正方形的面积分别为52和4,直角三角形两条直角边分别为x,y,那么=_____.
13、(4分)计算· (a≥0)的结果是_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.
(1)若△APD为等腰直角三角形.
①求直线AP的函数解析式;
②在x轴上另有一点G的坐标为(2,0),请在直线AP和y轴上分别找一点M、N,使△GMN的周长最小,并求出此时点N的坐标和△GMN周长的最小值.
(2)如图2,过点E作EF∥AP交x轴于点F,若以A、P、E、F为顶点的四边形是平行四边形,求直线PE的解析式.
15、(8分)已知,如图(1),a、b、c是△ABC的三边,且使得关于x的方程(b+c)x2+2ax﹣c+b=0有两个相等的实数根,同时使得关于x的方程x2+2ax+c2=0也有两个相等的实数根,D为B点关于AC的对称点.
(1)判断△ABC与四边形ABCD的形状并给出证明;
(2)P为AC上一点,且PM⊥PD,PM交BC于M,延长DP交AB于N,赛赛猜想CD、CM、CP三者之间的数量关系为CM+CD=CP,请你判断他的猜想是否正确,并给出证明;
(3)已知如图(2),Q为AB上一点,连接CQ,并将CQ逆时针旋转90°至CG,连接QG,H为GQ的中点,连接HD,试求出.
16、(8分)已知三角形纸片ABC,其中∠C=90°,AB=10,BC=6,点E,F分别是AC,AB上的点,连接EF.
(1)如图1,若将纸片ABC沿EF折叠,折叠后点A刚好落在AB边上点D处,且S△ADE=S四边形BCED,求ED的长;
(2)如图2,若将纸片ABC沿EF折叠,折叠后点A刚好落在BC边上点M处,且EM∥AB.
①试判断四边形AEMF的形状,并说明理由;
②求折痕EF的长.
17、(10分)已知长方形的长,宽.
(1)求长方形的周长;
(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.
18、(10分)有这样一个问题:
探究函数的图象与性质.
小东根据学习函数的经验,对函数的图象与性质进行了探究.
下面是小东的探究过程,请补充完成:
(1)填表
(2)根据(1)中的结果,请在所给坐标系中画出函数的图象;
(3)结合函数图象,请写出该函数的一条性质.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若分式值为0,则的值为__________.
20、(4分)因式分解:2x2﹣2=_____.
21、(4分)用反证法证明命题“在直角三角形中,至少有一个锐角不大于 45°”时第一步先假设所求证的结论不成立,即问题表述为______.
22、(4分)如图,在△ABC中,AC=BC=9,∠C=120°,D为AC边上一点,且AD=6,E是AB边上一动点,连接DE,将线段DE绕点D逆时针旋转30°得到DF,若F恰好在BC边上,则AE的长为_____.
23、(4分)一次函数y=kx-2的函数值y随自变量x的增大而减小,则k的取值范围是__.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=1.射线BD为∠ABC的平分线,交AC于点D.动点P以每秒2个单位长度的速度从点B向终点C运动.作PE⊥BC交射线BD于点E.以PE为边向右作正方形PEFG.正方形PEFG与△BDC重叠部分图形的面积为S.
(1)求tan∠ABD的值.
(2)当点F落在AC边上时,求t的值.
(3)当正方形PEFG与△BDC重叠部分图形不是三角形时,求S与t之间的函数关系式.
25、(10分)长方形纸片中,,,把这张长方形纸片如图放置在平面直角坐标系中,在边上取一点,将沿折叠,使点恰好落在边上的点处.
(1)点的坐标是____________________;点的坐标是__________________________;
(2)在上找一点,使最小,求点的坐标;
(3)在(2)的条件下,点是直线上一个动点,设的面积为,求与的函数 关系式.
26、(12分)如图所示的方格纸中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.在图中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】分析:方差是用来衡量一组数据波动大小的量,中位数、众数、平均数是反映一组数据的集中程度
详解:由于方差反映数据的波动情况,所以要比较两名同学在四次数学测试中谁的成绩比较稳定,应选用的统计量是方差.
故选B.
点睛:本题考查了统计量的选取问题,熟练掌握各统计量的特征是解答本题的关键.中位数反映一组数据的中等水平,众数反映一组数据的多数水平,平均数反映一组数据的平均水平,方差反映一组数据的稳定程度,方差越大越不稳定,方差越小越稳定.
2、C
【解析】
根据算术平方根和平方根进行计算即可
【详解】
=4
故选:C
此题考查算术平方根和平方根,掌握运算法则是解题关键
3、D
【解析】
根据平行四边形、矩形、菱形和正方形的性质,逐一判定即可得解.
【详解】
A选项,根据平行四边形对角线互相平分的性质,即可判定正确;
B选项,对角线相等的平行四边形是矩形,正确;
C选项,对角线互相垂直的平行四边形为菱形,正确;
D选项,并不能判定其为正方形;
故答案为D.
此题主要考查平行四边形、矩形、菱形和正方形的判定,熟练掌握,即可解题.
4、C
【解析】
由于在平面直角坐标系内,点在第三象限,根据点在平面直角坐标系内符号特征可得:,解不等式组可得:不等式组的解集是.
【详解】
因为点在第三象限,
所以,
解得不等式组的解集是,
故选C.
本题主要考查点在平面直角坐标系内符号特征,解决本题的关键是要熟练掌握点在平面直角坐标系内点的符号特征.
5、B
【解析】
已知矩形ABCD,,所以在直角三角形ABD中,,则得,根据矩形的性质,.
【详解】
已知矩形ABCD,
,
,
在直角三角形ABD中,
(直角三角形中角所对的直角边等于斜边的一半),
矩形的对角线相等,
.
所以D选项是正确的.
此题考查的知识点是矩形的性质和角的直角三角形问题,解题的关键是由已知得角的直角三角形及矩形性质求出AC.
6、B
【解析】
试题分析:要求平均数只要求出数据之和再除以总的个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.数据3,a,1,5的众数为1,即1次数最多;即a=1.则其平均数为(3+1+1+5)÷1=1.故选B.
考点:1.算术平均数;2.众数.
7、D
【解析】
根据平行线的性质得出∠B=∠DCE,∠BAD=∠E,然后根据AAS证得△ABD≌△ECD,得出AD=DE,根据对角线互相平分得到四边形ABEC为平行四边形,CE=AB,即可解答.
【详解】
解:∵CE∥AB,
∴∠B=∠DCE,∠BAD=∠E,
在△ABD和△ECD中,
∴△ABD≌△ECD(AAS),
∴DA=DE,AB=CE,
∵AD=DE,BD=CD,
∴四边形ABEC为平行四边形,
故选:D.
本题考查了平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解决本题的关键是证明△ABD≌△ECD.
8、C
【解析】
根据总数,众数,中位数的定义即可一一判断;
【详解】
解:该班一共有:1+5+4+10+15+10=45(人),众数是28分,中位数为28分,
故A、B、D正确,C错误,
故选:C.
本题考查总数,众数,中位数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、9≤a<1
【解析】
解不等式3x−a≤0得x≤,其中,最大的正整数为3,故3≤<4,从而求解.
【详解】
解:解不等式3x−a≤0,得x≤,
∵不等式的正整数解是1,2,3,
∴3≤<4,
解得9≤a<1.
故答案为:9≤a<1.
本题考查了一元一次不等式的解法.先解含字母系数的不等式,再根据正整数解的情况确定字母的取值范围.
10、1.
【解析】
将a2﹣4ab+4b2进行因式分解变形为(a﹣2b)2,再把a﹣2b=10,代入即可.
【详解】
∵a﹣2b=10,∴a2﹣4ab+4b2=(a﹣2b)2=102=1,故答案为:1.
本题考查因式分解的应用,解答本题的关键是明确题意,利用完全平方公式因式分解,求出相应的式子的值.
11、-80
【解析】
先将所求的式子分解因式,再把已知的式子整体代入计算即可.
【详解】
解:,
故答案为-80.
本题考查了多项式的因式分解和整体代入的数学思想,正确的进行多项式的因式分解是解题的关键.
12、1
【解析】
根据题意,结合图形求出xy与的值,原式利用完全平方公式展开后,代入计算即可求出其值.
【详解】
解:根据勾股定理可得=52,
四个直角三角形的面积之和是:×4=52-4=48,
即2xy=48,
∴==52+48=1.
故答案是:1.
本题主要考查了勾股定理,以及完全平方公式的应用,根据图形的面积关系,求得和xy的值是解题的关键.
13、4a
【解析】
【分析】根据二次根式乘法法则进行计算即可得.
【详解】
=
=
=4a,
故答案为4a.
【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)①y=﹣x+3,②N(0, ),;(2) y=2x﹣2.
【解析】
(1)①由矩形的性质和等腰直角三角形的性质可求得∠BAP=∠BPA=45°,从而可得BP=AB=2,进而得到点P的坐标,再根据A、P两点的坐标从而可求AP的函数解析式;
②作G点关于y轴对称点G'(﹣2,0),作点G关于直线AP对称点G''(3,1),连接G'G''交y轴于N,交直线AP 于M,此时△GMN周长的最小,根据点G'、G''两点的坐标,求出其解析式,然后再根据一次函数的性质即可求解;
(2)根据矩形的性质以及已知条件求得PD=PA,进而求得DM=AM,根据平行四边形的性质得出PD=DE,然后通过得出△PDM≌△EDO得出点E和点P的坐标,即可求得.
【详解】
解:(1)①∵矩形OABC,OA=3,OC=2,
∴A(3,0),C(0,2),B(3,2),
AO∥BC,AO=BC=3,∠B=90°,CO=AB=2,
∵△APD为等腰直角三角形,
∴∠PAD=45°,
∵AO∥BC,
∴∠BPA=∠PAD=45°,
∵∠B=90°,
∴∠BAP=∠BPA=45°,
∴BP=AB=2,
∴P(1,2),
设直线AP解析式y=kx+b,
∵过点A,点P,
∴
∴ ,
∴直线AP解析式y=﹣x+3;
②如图所示:
作G点关于y轴对称点G'(﹣2,0),作点G关于直线AP对称点G''(3,1)
连接G'G''交y轴于N,交直线AP 于M,此时△GMN周长的最小,
∵G'(﹣2,0),G''(3,1)
∴直线G'G''解析式y=x+
当x=0时,y=,
∴N(0,),
∵G'G''=,
∴△GMN周长的最小值为;
(2)如图:作PM⊥AD于M,
∵BC∥OA
∴∠CPD=∠PDA且∠CPD=∠APB,
∴PD=PA,且PM⊥AD,
∴DM=AM,
∵四边形PAEF是平行四边形
∴PD=DE
又∵∠PMD=∠DOE,∠ODE=∠PDM
∴△PMD≌△EOD,
∴OD=DM,OE=PM,
∴OD=DM=MA,
∵PM=2,OA=3,
∴OE=2,OM=2
∴E(0,﹣2),P(2,2)
设直线PE的解析式y=mx+n
∴
∴直线PE解析式y=2x﹣2.
本题主要考查了求一次函数的解析式、矩形的性质、等腰三角形的性质、平行四边形的性质、对称的性质等知识点,熟练掌握基础知识正确的作出辅助线是解题的关键.
15、(1)△ABC是等腰直角三角形.四边形ABCD是正方形;(2)猜想正确.(3)
【解析】
(1)结论:△ABC是等腰直角三角形.四边形ABCD是正方形;根据根的判别式=0即可解决问题;
(2)猜想正确.如图1中,作PE⊥BC于E,PF⊥CD于F.只要证明△PEM≌△PFD即可解决问题;
(3)连接DG、CH,作QK⊥CD于K.则四边形BCKQ是矩形.只要证明△CKH≌△GDH,△DHK是等腰直角三角形即可解决问题.
【详解】
解:(1)结论:△ABC是等腰直角三角形.四边形ABCD是正方形;
理由:∵关于x的方程(b+c)x2+2ax﹣c+b=0有两个相等的实数根,
∴4a2﹣4(b+c)(b﹣c)=0,
∴a2+c2=b2,
∴∠B=90°,
又∵关于x的方程x2+2ax+c2=0也有两个相等的实数根,
∴4a2﹣4c2=0,
∴a=c,
∴△ABC是等腰直角三角形,
∵D、B关于AC对称,
∴AB=BC=CD=AD,
∴四边形ABCD是菱形,
∵∠B=90°,
∴四边形ABCD是正方形.
(2)猜想正确.
理由:如图1中,作PE⊥BC于E,PF⊥CD于F.
∵四边形ABCD是正方形,
∴∠PCE=∠PCF=45°,
∵PE⊥CB,PF⊥CD,
∴PE=PF,
∵∠PFC=∠PEM=∠ECF=90°,PM⊥PD,
∴∠EPF=∠MPD=90°,四边形PECF是正方形,
∴∠MPE=∠DPF,
∴△PEM≌△PFD,
∴EM=DF,
∴CM+CCE﹣EM+CF+DF=2CF,
∵PC=CF,
∴CM+CD=PC.
(3)连接DG、CH,作QK⊥CD于K.则四边形BCKQ是矩形.
∵∠BCD=∠QCG=90°,
∴∠BCQ=∠DCG,
∵CB=CD,CQ=CG,
∴△CBQ≌△CDG,
∴∠CBQ=∠CDG=90°,BQ=DG=CK,
∵CQ=CG,QH=HG,
∴CH=HQ=HG,CH⊥QG,
∵∠CHO=∠GOD,∠COH=∠GOD,
∴∠HGD=∠HCK,
∴△CKH≌△GDH,
∴KH=DH,∠CHK=∠GHD,
∴∠CHG=∠KHD=90°,
∴△DHK是等腰直角三角形,
∴DK=AQ=DH,
∴.
本题考查四边形综合题、正方形的性质和判定.等腰直角三角形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
16、(1)DE=1;(2)①四边形AEMF是菱形,证明见解析;②
【解析】
(1)先利用折叠的性质得到EF⊥AB,△AEF≌△DEF,则S△AEF=S△DEF,则易得S△ABC=1S△AEF,再证明Rt△AEF∽Rt△ABC,然后根据相似三角形的性质得到两个三角形面积比和AB,AE的关系,再利用勾股定理求出AB即可得到AE的长;
(2)①根据四边相等的四边形是菱形证明即可;
②设AE=x,则EM=x,CE=8−x,先证明△CME∽△CBA得到关于x的比例式,解出x后计算出CM的值,再利用勾股定理计算出AM,然后根据菱形的面积公式计算EF.
【详解】
(1)∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,
∴EF⊥AB,△AEF≌△DEF,
∴S△AEF=S△DEF,
∵S△ADE=S四边形BCDE,
∴S△ABC=4S△AEF,
在Rt△ABC中,∵∠ACB=90,AB=10,BC=6,
∴AC=8,
∵∠EAF=∠BAC,
∴Rt△AEF∽Rt△ABC,
∴,即,
∴AE=1(负值舍去),
由折叠知,DE=AE=1.
(2)①如图2中,∵△ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,
∴AE=EM,AF=MF,∠AFE=∠MFE,
∵ME∥AB,
∴∠AFE=∠FEM
∴∠MFE=∠FEM,
∴ME=MF,
∴AE=EM=MF=AF,
∴四边形AEMF为菱形.
②设AE=x,则EM=x,CE=8−x,
∵四边形AEMF为菱形,
∴EM∥AB,
∴△CME∽△CBA,
∴,
即,
解得x=,CM=,
在Rt△ACM中,AM=,
∵S菱形AEMF=EF•AM=AE•CM,
∴EF=2×.
本题考查了相似形的综合题:熟练掌握折叠的性质和菱形的判定与性质;灵活构建相似三角形,运用勾股定理或相似比表示线段之间的关系和计算线段的长.解决此类题目时要各个击破.本题有一定难度,证明三角形相似和运用勾股定理得出方程是解决问题的关键,属于中考常考题型.
17、(1);(2)长方形的周长大.
【解析】
试题分析:(1)代入周长计算公式解决问题;
(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.
试题解析:
(1)
∴长方形的周长为 .
(2)长方形的面积为:
正方形的面积也为4.边长为
周长为:
∴长方形的周长大于正方形的周长.
18、(1)见解析;(2)见解析;(3)见解析
【解析】
(1)将x的值代入函数中,再求得y的值即可;
(2)根据(1)中x、y的值描点,连线即可;
(3)根据(2)中函数的图象写出一条性质即可,如:不等式成立的的取值范围是.
【详解】
(1)填表如下:
(2)根据(1)中的结果作图如下:
(3)根据(2)中的图象,不等式成立的的取值范围是.
考查了画函数的图象、性质,解题关键是由列表得到图象,由图象得到性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】
根据分式值为0的条件进行求解即可.
【详解】
由题意得,x+1=0,
解得x=-1,
故答案为:-1.
本题考查了分式值为0的条件,熟练掌握分式值为0时,分子为0且分母不为0是解题的关键.
20、
【解析】
首先提公因式2,再利用平方差进行二次分解.
【详解】
原式=2(x2﹣1)=2(x+1)(x﹣1).
故答案为2(x+1)(x﹣1).
此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
21、假设在直角三角形中,两个锐角都大于45°.
【解析】
反证法的第一步是假设命题的结论不成立,据此可以得出答案.
【详解】
∵反证法的第一步是假设命题的结论不成立,∴用反证法证明命题“在直角三角形中,至少有一个锐角不大于 45°”时第一步即为,假设在直角三角形中,两个锐角都大于45°.
此题主要考查了反证法的知识,解此题的关键是掌握反证法的意义和步骤. 反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)由矛盾说明假设错误,从而证明原命题正确.
22、3+
【解析】
由,可知,又有,联想一线三等角模型,延长到,使,得,进而可得,,由于,即可得是直角三角形,易求,由即可解题.
【详解】
解:如图,延长到,使,连接,
,,
,,
,
又,
,
在和中,
,
,,
,
,
设,则,由得:
,
解得,(不合题意舍去),
,
,
故答案为:.
本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质和等腰直角三角形的性质.本题解题关键是通过一线三等角模型构造全等三角形,从而得到.
23、k<1
【解析】
根据一次函数图象的增减性来确定k的符号即可.
【详解】
解:∵一次函数y=kx-2的函数值y随自变量x的增大而减小,
∴k<1,
故答案为k<1.
本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠1)中,当k>1时,y随x的增大而增大;当k<1时,y随x的增大而减小.
二、解答题(本大题共3个小题,共30分)
24、(1)tan∠ABD=;(2);(3)①当时,;②当时,;③当时,.
【解析】
(1)过点D作DH⊥BC于点H,可得△ABD≌△HBD,所以CH=BC-AB=4.再由三角形相似即可求出DH=AD=3.根据三角函数定义即可解题.
(2)由(1)得BP=2PE,所以BP=2t,PE=PG=EF=FG=t,当点F落在AC边上时,FG=CG,即可得到方程求出t.
(3)当正方形PEFG与△BDC重叠部分图形不是三角形时,分三种情况分别求出S与t之间的函数关系式,①当时,F点在三角形内部或边上,②当时,如图:E点在三角形内部,F点在外部,此时重叠部分图形的面积S=S正方形-S△FMN,③当时,重叠部分面积为梯形MPGN面积,
【详解】
解:(1)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=1
根据勾股定理得BC=10
过点D作DH⊥BC于点H
∵△ABD≌△HBD,
∴BH=AH=6,DH=AD,
∴CH=4,
∵△ABC∽△HDC,
∴,
∴,
∴DH=AD=3,
∴tan∠ABD==,
(2)由(1)可知BP=2PE,依题意得:BP=2t,PE=PG=EF=FG=t,CG=10-3t,
当点F落在AC边上时,FG=CG,
即,
,
(3)①当时,F点在三角形内部或边上,正方形PEFG在△BDC内部,
此时重叠部分图形的面积为正方形面积:,
②当时,如图:E点在三角形内部,F点在外部,
∵GC=10-3t,NG=CG=(10-3t),FN=t-(10-3t),FM= ,
此时重叠部分图形的面积S=S正方形-S△FMN
,
③当时,重叠部分面积为梯形MPGN面积,如图:
∵GC=10-3t,NG=CG=(10-3t),PC=10-2t,PM=,
∴,
综上所述:当时,;当时,;当时,.
本题考查三角形综合题,涉及了矩形的性质、勾股定理、相似三角形的性质和判定、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建方程解决问题,属于中考压轴题.
25、 (1)(0,3);(﹣4,0);(2);(3)
【解析】
(1)根据折叠性质求出BF,再利用勾股定理求出CF,从而得出OF,在△EOF中设未知数的方法根据勾股定理列出方程求解即可.
(2)作E关于AB的对称点,连接对称点到F,利用勾股定理求出长度即可.
(3)利用待定系数法求出PF的表达式,再根据面积公式代入即可.
【详解】
(1)由折叠的性质可得BF=AB=10,
∵BC=8,∠BCF=90°,
∴CF=,
∵OC=AB=10,
∴OF=10-6=4,即F的坐标为(﹣4,0),
设AE为x,则EF也为x,EO为8-x,
根据勾股定理得:42+(8-x)2=x2,解得x=1.
∴EO=8-1=3,即E的坐标为(0,3).
(2)作E关于AB的对称点E’,连接E’F交AB于P,此时E’F即为PE+PF最小值.
根据对称性可知AE’=AE=1,则OE’=1+8=13,
根据勾股定理可得:E’F=.
(3)根据题意可得S=.
设直线PF的表达式为:y=kx+13,
将点F(﹣4,0)代入,解得k=,
∴PF的表达式为:,
∴
本题考查一次函数与几何的动点问题,关键在于熟练掌握此类型辅助线的做法.
26、见解析
【解析】
本题是直角三角形定义的应用问题,如果三角形有一个内角是直角,那么这个三角形就是直角三角形.根据三角形内角和定理,三角形中是直角的内角最多只有一个.从图中可以看出线段AB没有经过任何一个小正方形的边,因此从点A、B处构造直角比较困难;所以考虑在点C处构造直角,通过点A和点B分别作水平和竖直的直线,则直线交点就是点C的位置.
【详解】
过点A作竖直的直线,过点B作水平的直线,交点处就是点C,如图①;或者过点A作水平的直线,过点B作竖直的直线,交点处就是点C,如图②.

本题考查直角三角形的定义、勾股定理和勾股定理的逆定理,解答的关键是掌握直角三角形的定义、勾股定理和勾股定理的逆定理.
题号
一
二
三
四
五
总分
得分
成绩(分)
20
22
24
26
28
30
人数(人)
1
5
4
10
15
10
…
0
1
2
3
4
5
6
. . .
…
3
2
. . .
. . .
0
1
2
3
4
5
6
. . .
. . .
3
2
1
0
. . .
2025届江苏省泰州市高港实验学校九上数学开学教学质量检测试题【含答案】: 这是一份2025届江苏省泰州市高港实验学校九上数学开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏泰州市高港实验学校数学九上开学综合测试模拟试题【含答案】: 这是一份2024-2025学年江苏泰州市高港实验学校数学九上开学综合测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年江苏泰州市高港实验学校数学九上期末统考试题含答案: 这是一份2023-2024学年江苏泰州市高港实验学校数学九上期末统考试题含答案,共7页。试卷主要包含了反比例函数的图象位于等内容,欢迎下载使用。