年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省靖江市实验学校2025届九上数学开学联考模拟试题【含答案】

    江苏省靖江市实验学校2025届九上数学开学联考模拟试题【含答案】第1页
    江苏省靖江市实验学校2025届九上数学开学联考模拟试题【含答案】第2页
    江苏省靖江市实验学校2025届九上数学开学联考模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省靖江市实验学校2025届九上数学开学联考模拟试题【含答案】

    展开

    这是一份江苏省靖江市实验学校2025届九上数学开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,已知正比例函数与一次函数的图象交于点P.下面有四个结论:①k>0;②b>0;③当x>0时,>0;④当x-x+b.其中正确的是( )
    A.①③B.②③C.③④D.①④
    2、(4分)下列说法中错误的是( )
    A.直角三角形斜边上的中线等于斜边的一半
    B.等底等高三角形的面积相等
    C.三角形的中位线平行于第三边,并且等于第三边的一半
    D.如果三角形两条边的长分别是a、b,第三边长为c,则有a2+b2=c2
    3、(4分)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为( )
    A.cm2B.cm2C.cm2D.cm2
    4、(4分)在 RtABC 中, ∠C  90 , AB  3 , AC  2, 则 BC 的值( )
    A.B.C.D.
    5、(4分)化简的结果是( ).
    A.B.C.D.
    6、(4分)已知一次函数上有两点,,若,则、的关系是( )
    A.B.C.D.无法判断
    7、(4分)如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=3cm,那么平行线a,b之间的距离为( )
    A.5cmB.4cmC.3cmD.不能确定
    8、(4分)二次根式中x的取值范围是( )
    A.x≥5B.x≤5C.x≥﹣5D.x<5
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,菱形的对角线交于点为边的中点,如果菱形的周长为,那么的长是__________.
    10、(4分)要使分式有意义,则应满足的条件是
    11、(4分)甲、乙两名射击手的100次测试的平均成绩都是9环,方差分别是S2甲=0.8,S2乙=0.35,则成绩比较稳定的是_____(填“甲”或“乙”).
    12、(4分)如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
    ①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD
    其中正确结论的为______(请将所有正确的序号都填上).
    13、(4分)若,则.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡,从A城运往C、D两乡运肥料的费用分别是每吨20元和25元,从B城运往C、D两乡运肥料的费用分别为每吨15元和24元,现在C乡需要肥料240吨,D乡需要肥料260吨,设A城运往C乡的肥料量为x吨,总运费为y元.
    (1)写出总运费y元关于x的之间的关系式;
    (2)当总费用为10200元,求从A、B城分别调运C、D两乡各多少吨?
    (3)怎样调运化肥,可使总运费最少?最少运费是多少?
    15、(8分)如图,一次函数的图像经过点A(-1,0),并与反比例函数()的图像交于B(m,4)
    (1)求的值;
    (2)以AB为一边,在AB的左侧作正方形,求C点坐标;
    (3)将正方形沿着轴的正方向,向右平移n个单位长度,得到正方形,线段的中点为点,若点和点同时落在反比例函数的图像上,求n的值.
    16、(8分)在正方形ABCD中,P是对角线AC上的点,连接BP、DP.
    ⑴求证:BP=DP;
    ⑵如果AB=AP,求∠ABP的度数.
    17、(10分)如图,矩形ABCD中,对角线AC与BD相交于点O.
    (1)写出与相反的向量______;
    (2)填空:++=______;
    (3)求作:+(保留作图痕迹,不要求写作法).
    18、(10分)如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥AC.
    (1)求证:BE=AF;
    (2)若∠ABC=60°,BD=6,求四边形ADEF的面积。
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=_____.
    20、(4分)某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是__________个.
    21、(4分)在矩形ABCD中,AB=4,AD=9点F是边BC上的一点,点E是AD上的一点,AE:ED=1:2,连接EF、DF,若EF=2,则CF的长为______________。
    22、(4分)一组数据;1,3,﹣1,2,x的平均数是1,那么这组数据的方差是_____.
    23、(4分)在Rt△ABC中,∠ACB=90°,AE,BD是角平分线,CM⊥BD于M,CN⊥AE于N,若AC=6,BC=8,则MN=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图所示,图1、图2分别是的网格,网格中的每个小正方形的边长均为1.请按下列要求分别画出相应的图形,且所画图形的每个顶点均在所给小正方形的顶点上.
    (1)在图1中画出一个周长为的菱形 (非正方形);
    (2)在图2中画出一个面积为9的平行四边形,且满足,请直接写出平行四边形的周长.
    25、(10分)如图,AC为矩形ABCD的对角线,DE⊥AC于E,BF⊥AC于F。
    求证:DE=BF
    26、(12分)已知:如图,在中,延长到,使得.连结,.
    (1)求证:;
    (2)请在所给的图中,用直尺和圆规作点(不同于图中已给的任何点),使以,,,为顶点的四边形是平行四边形(只作一个,保留痕迹,不写作法).
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据正比例函数和一次函数的性质判断即可.
    【详解】
    解:∵直线y1=kx经过第一、三象限,
    ∴k>0,故①正确;
    ∵y2=-x+b与y轴交点在负半轴,
    ∴b<0,故②错误;
    ∵正比例函数y1=kx经过原点,且y随x的增大而增大,
    ∴当x>0时,y1>0;故③正确;
    当x<-2时,正比例函数y1=kx在一次函数y2=-x+b图象的下方,即kx<-x+b,故④错误.
    故选:A.
    本题考查了一次函数与一元一次不等式,关键是根据正比例函数和一次函数的性质判断.
    2、D
    【解析】
    根据三角性有关的性质可逐一分析选项,即可得到答案.
    【详解】
    A项正确,直角三角形斜边上的中线等于斜边的一半;B项正确,等底等高三角形的面积相等;C项正确,三角形的中位线平行于第三边,并且等于第三边的一半;D项错误如果三角形两条边的长分别是a、b,第三边长为c,则不一定是a2+b2=c2,有可能不是直角三角形.
    本题考查了三角形的的性质、三角形的面积及勾股定理相关的知识,学生针对此题需要认真掌握相关定理,即可求解.
    3、B
    【解析】
    试题分析:设矩形ABCD的面积为S=20cm2,
    ∵O为矩形ABCD的对角线的交点,
    ∴平行四边形AOC1B底边AB上的高等于BC的.∴平行四边形AOC1B的面积=S.
    ∵平行四边形AOC1B的对角线交于点O1,
    ∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的.
    ∴平行四边形AO1C2B的面积=×S=.
    …,
    依此类推,平行四边形AO4C5B的面积=.故选B.
    4、A
    【解析】
    根据勾股定理即可求出.
    【详解】
    由勾股定理得,.
    故选.
    本题考查的是勾股定理,掌握勾股定理是解题的关键.
    5、B
    【解析】
    根据三角形法则计算即可解决问题.
    【详解】
    解:原式

    故选:B.
    本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.
    6、A
    【解析】
    由一次函数可知,,y随x的增大而增大,由此选择答案即可.
    【详解】
    由一次函数可知,,y随x的增大而增大;
    故选A
    本题考查一次函数增减性问题,确定k的符号,进而确定函数增减趋势,是解答本题的关键.
    7、B
    【解析】
    从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,并由勾股定理可得出答案.
    【详解】
    解:∵AC⊥b,
    ∴△ABC是直角三角形,
    ∵AB=5cm,BC=3cm,
    ∴AC===4(cm),
    ∴平行线a、b之间的距离是:AC=4cm.
    故选:B.
    本题考查了平行线之间的距离,以及勾股定理,关键是掌握平行线之间距离的定义,以及勾股定理的运用.
    8、B
    【解析】
    根据二次根式有意义的条件列出不等式,再求解即可.
    【详解】
    解:由题意,得:5-x≥0,解得x≤5.
    故答案为B.
    本题考查了二次根式有意义的条件,明确二次根式中的被开方数a≥0是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    直接利用菱形的性质得出其边长以及对角线垂直,进而利用直角三角形的性质得出EO的长.
    【详解】
    解:∵菱形ABCD的周长为12,
    ∴AD=3,∠AOD=90°,
    ∵E为AD边中点,
    ∴OE=AD=.
    故答案为:.
    本题主要考查了菱形的性质以及直角三角形的性质(直角三角形斜边上的中线等于斜边的一半),正确掌握直角三角形的性质是解题关键.
    10、≠1
    【解析】
    根据题意得:-1≠0,即≠1.
    11、乙
    【解析】
    根据方差的定义,方差越小数据越稳定,即可得出答案.
    【详解】
    解:∵甲、乙的平均成绩都是9环,方差分别是S甲2=0.8,S乙2=0.35,
    ∴S甲2>S乙2,
    ∴成绩比较稳定的是乙;
    故答案为:乙.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    12、①③④
    【解析】
    根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.
    【详解】
    解:∵△ACE是等边三角形,
    ∴∠EAC=60°,AE=AC,
    ∵∠BAC=30°,
    ∴∠FAE=∠ACB=90°,AB=2BC,
    ∵F为AB的中点,
    ∴AB=2AF,
    ∴BC=AF,
    ∴△ABC≌△EFA,
    ∴FE=AB,
    ∴∠AEF=∠BAC=30°,
    ∴EF⊥AC,故①正确,
    ∵EF⊥AC,∠ACB=90°,
    ∴HF∥BC,
    ∵F是AB的中点,
    ∴HF=BC,
    ∵BC=AB,AB=BD,
    ∴HF=BD,故④说法正确;
    ∵AD=BD,BF=AF,
    ∴∠DFB=90°,∠BDF=30°,
    ∵∠FAE=∠BAC+∠CAE=90°,
    ∴∠DFB=∠EAF,
    ∵EF⊥AC,
    ∴∠AEF=30°,
    ∴∠BDF=∠AEF,
    ∴△DBF≌△EFA(AAS),
    ∴AE=DF,
    ∵FE=AB,
    ∴四边形ADFE为平行四边形,
    ∵AE≠EF,
    ∴四边形ADFE不是菱形;
    故②说法不正确;
    ∴AG=AF,
    ∴AG=AB,
    ∵AD=AB,
    则AD=4AG,故③说法正确,
    故答案为①③④.
    考点:菱形的判定;等边三角形的性质;含30度角的直角三角形.
    13、1
    【解析】
    根据比例的性质即可求解.
    【详解】
    ∵,∴x=3y,∴原式==1.
    故答案为:1.
    本题考查了比例的性质,关键是得出x=3y.
    三、解答题(本大题共5个小题,共48分)
    14、(1)y=4x+10040(0≤x≤200);(2)从A城运往C乡的肥料量为40吨,A城运往D乡的肥料量为160吨,B城运往C的肥料量分别为200吨,B城运往D的肥料量分别为100吨.(3)从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值是10040元.
    【解析】
    (1)设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和(60+x)吨,然后根据总运费和运输量的关系列出方程式,就可以求出解析式;
    (2)将y=10200代入(1)中的函数关系式可求得x的值;
    (3)根据(1)的解析式,由一次函数的性质就可以求出结论.
    【详解】
    (1)设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和[260-(200-x)]=(60+x)吨.由总运费与各运输量的关系可知,反映y与x之间的函数关系为
    y=20x+25(200-x)+15(240-x)+24(60+x)
    化简,得y=4x+10040(0≤x≤200)
    (2)将y=10200代入得:4x+10040=10200,解得:x=40,
    ∴200-x=200-40=160,240-x=200,60+x=100,
    ∴从A城运往C乡的肥料量为40吨,A城运往D乡的肥料量为160吨,B城运往C的肥料量分别为200吨,B城运往D的肥料量分别为100吨.
    (3)∵y=4x+10040,
    ∴k=4>0,
    ∴y随x的增大而增大,
    ∴当x=0时,y最小=10040
    ∴从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值是10040元.
    本题考查了一次函数的解析式的运用,一次函数的性质的运用.解答时求出一次函数的解析式是关键.
    15、(1)k1=4;(2)C点坐标为(-3,6);(3)n=.
    【解析】
    (1)把A点坐标代入y=2x+b,可求出b值,把B(m,4)代入可求出m值,代入即可求出k1的值;(2)过B作BF⊥x轴于F,过C作CG⊥FB,交FB的延长线于G,利用AAS可证明△CBG≌△BAF,可得AF=BG,CG=BF,根据A、B两点坐标即可得C点坐标;(3)由A、B、C三点坐标可得向右平移n个单位后A1、B1、C1的坐标,即可得E点坐标,根据k2=xy列方程即可求出n值.
    【详解】
    (1)∵一次函数的图像经过点A(-1,0),
    ∴-2+b=0,
    解得:b=2,
    ∵点B(m,4)在一次函数y=2x+2上,
    ∴4=2m+2,
    解得:m=1,
    ∵B(1,4)在反比例函数图象上,
    ∴k1=4.
    (2)如图,过B作BF⊥x轴于F,过C作CG⊥FB,交FB的延长线于G,
    ∵A(-1,0),B(1,4),
    ∴AF=2,BF=4,
    ∴∠GCB+∠CBG=90°,
    ∵四边形ABCD是正方形,
    ∴∠ABC=90°,
    ∴∠ABF+∠CBG=90°,
    ∴∠GCB=∠ABF,
    又∵BC=AB,∠AFB=∠CGB=90°,
    ∴△CBG≌△BAF,
    ∴BG=AF=2,CG=BF=4,
    ∴GF=6,
    ∵在AB的左侧作正方形ABCD,
    ∴C点坐标为(-3,6).
    (3)∵正方形ABCD沿x轴的正方向,向右平移n个单位长度,
    ∴A1(-1+n,0),B1(1+n,4),C1(-3+n,6),
    ∵线段A1B1的中点为点E,
    ∴E(n,2),
    ∵点和点E同时落在反比例函数的图像上,
    ∴k2=2n=6(-3+n)
    解得:n=.
    本题考查一次函数与反比例函数综合,涉及的知识点有平移的性质、全等三角形的性质,一次函数和反比例函数图象上点的坐标特征及正方形的性质,熟练掌握性质和定理是解题关键.
    16、 (1)证明见解析;(2)67.5°.
    【解析】
    (1)证明△ABP≌△ADP,可得BP=DP;
    (2)证得∠ABP=∠APB,由∠BAP=45°可得出∠ABP=67.5°.
    【详解】
    证明:(1)∵四边形ABC是正方形,
    ∴AD=AB,∠DAP=∠BAP=45°,
    在△ABP和△ADP中

    ∴△ABP≌△ADP(SAS),
    ∴BP=DP,
    (2)∵AB=AP,
    ∴∠ABP=∠APB,
    又∵∠BAP=45°,
    ∴∠ABP=67.5°.
    本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练运用图形的性质证明问题.
    17、 (1) ,;(2);(3)见解析.
    【解析】
    (1)观察图形直接得到结果;
    (2)由+=,+=即可得到答案;
    (3)根据平行四边形法则即可求解.
    【详解】
    解:(1)与相反的向量有,.
    (2)∵+=,+=,
    ∴++=.
    (3)如图,作平行四边形OBEC,连接AE,即为所求.
    故答案为(1) ,;(2);(3)见解析.
    本题考查了平面向量,平面向量知识在初中数学教材中只有沪教版等极少数版本中出现.
    18、(1)详见解析;(2)
    【解析】
    (1)由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论;
    (2)首先过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,易求得DG与DE的长,继而求得答案.
    【详解】
    (1)证明:∵DE∥AB,EF∥AC,
    ∴四边形ADEF是平行四边形,∠ABD=∠BDE,
    ∴AF=DE,
    ∵BD是△ABC的角平分线,
    ∴∠ABD=∠DBE,
    ∴∠DBE=∠BDE,
    ∴BE=DE,
    ∴BE=AF;
    (2)过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,
    ∵∠ABC=60°,BD是∠ABC的平分线,
    ∴∠ABD=∠EBD=30°,
    ∴DG=BD=×6=3,
    ∵BE=DE,
    ∴BH=DH=BD=3,
    ∴BE= =2,
    ∴DE=BE=2 ,
    ∴四边形ADEF的面积为:DE⋅DG=6.
    此题考查角平分线的性质,平行四边形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形,解题关键在于作辅助线
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、-2
    【解析】
    由正比例函数的定义可得m2﹣2=2,且m﹣2≠2.
    【详解】
    解:由正比例函数的定义可得:m2﹣2=2,且m﹣2≠2,
    解得:m=﹣2,
    故答案为:﹣2.
    本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠2.
    20、1.
    【解析】
    解:由图可知,把数据从小到大排列的顺序是:180、182、1、185、186,中位数是1.
    故答案为1.
    本题考查折线统计图;中位数.
    21、8或4
    【解析】
    由题意先求出AE=3,ED=6,因为EF=2>AB,分情况讨论点F在点E的左侧和右侧的情况,根据勾股定理求出GE(EH)即可求解.
    【详解】
    解:∵AD=9,AE:ED=1:2,
    ∴AE=3,ED=6,
    又∵EF=2>AB,分情况讨论:
    如下图:
    当点F在点E的左侧时,做FG垂直AD,则FCDG为矩形,AB=FG,
    CF=GD=ED+GE,在RT三角形GFE中,GE==2,
    则此时CF=6+2=8;
    如下图:
    当点F在点E的右侧时,做FH垂直AD,同理可得CF=ED-EH,HF=AB=4,EH=2,
    则此时CF=6-2=4;
    综上,CF的长为8或4.
    本题考查矩形,直角三角形的性质,也考查勾股定理解三角形,注意分情况讨论.
    22、1
    【解析】
    先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x1,…xn的平均数为,),则方差.
    【详解】
    解:x=1×5﹣1﹣3﹣(﹣1)﹣1=0,
    s1= [(1﹣1)1+(1﹣3)1+(1+1)1+(1﹣1)1+(1﹣0)1]=1.
    故答案为1.
    本题考查了方差的定义:一般地设n个数据,x1,x1,…xn的平均数为,),则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    23、1.
    【解析】
    延长CM交AB于G,延长CN交AB于H,证明△BMC≌△BMG,得到BG=BC=8,CM=MG,同理得到AH=AC=6,CN=NH,根据三角形中位线定理计算即可得出答案.
    【详解】
    如图所示,延长CM交AB于G,延长CN交AB于H,
    ∵∠ACB=90°,AC=6,BC=8,
    ∴由勾股定理得AB=10,
    在△BMC和△BMG中,

    ∴△BMC≌△BMG,
    ∴BG=BC=8,CM=MG,
    ∴AG=1,
    同理,AH=AC=6,CN=NH,
    ∴GH=4,
    ∵CM=MG,CN=NH,
    ∴MN=GH=1.
    故答案为:1.
    本题考查了等腰三角形的判定和性质、三角形的中位线.利用全等证出三角形BCE与三角形ACH是等腰三角形是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)见解析,周长为:+2.
    【解析】
    (1)利用数形结合的思想画出边长为 菱形即可.
    (2)利用数形结合的思想解决问题即可.
    【详解】
    解:(1)∵菱形周长为,
    ∴菱形的边长为,
    如图1所示,菱形ABCD即为所求.
    (2)如图2中,平行四边形MNPQ即为所求.
    ∵如图所示,∠MNP=45°,∠MPN=90°,
    ∴NP=MP,
    又∵面积为9,
    ∴NP∙MP=9,
    ∴NP=MP=3,
    ∴MN=,
    ∴周长为:+2.
    本题考查菱形的判定和性质,平行四边形的判定和性质,数形结合的思想等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    25、详见解析
    【解析】
    根据平行线的性质,利用全等三角形的判定定理(AAS)和性质,可得出结论.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD=BC,AD//BC,∴∠DAE=∠CBF,
    ∵DE⊥AC于E,BF⊥AC于F,
    ∴∠DEA=∠BFC=90°,
    在△AED和△BFC中,

    ∴△AED≌△BFC,
    ∴BF=DE.
    考查了平行四边形的性质,以及全等三角形的性质与判定,解题关键是灵活运用其性质.
    26、(1)详见解析;(2)详见解析
    【解析】
    (1)由四边形ABCD是平行四边形,得到AB=CD,AB∥CD,易得BE∥CD,由于BE=AB可得BE=CD,推出四边形BECD是平行四边形,再运用平行四边形的性质解答即可;
    (2)分别以C,E为圆心,以BE,BC的长为半径画弧,两弧交于一点F,则点F即为所求.
    【详解】
    (1)证明:∵中,
    ∴,.
    又,
    ,,
    四边形是平行四边形,

    (2)如图:
    本题考查了平行四边形的判定和性质,灵活运用平行四边形的判定和性质定理是解题的关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    江苏省靖江市城南新区中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】:

    这是一份江苏省靖江市城南新区中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省灌南县苏州路实验学校2024-2025学年九上数学开学联考模拟试题【含答案】:

    这是一份江苏省灌南县苏州路实验学校2024-2025学年九上数学开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届江苏省靖江市实验学校天水分校数学九年级第一学期开学复习检测模拟试题【含答案】:

    这是一份2025届江苏省靖江市实验学校天水分校数学九年级第一学期开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map