![江苏省南通市启东市东安中学2025届九上数学开学质量跟踪监视试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16284796/0-1729725396722/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省南通市启东市东安中学2025届九上数学开学质量跟踪监视试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16284796/0-1729725396782/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省南通市启东市东安中学2025届九上数学开学质量跟踪监视试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16284796/0-1729725396820/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省南通市启东市东安中学2025届九上数学开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(8,4),若直线经过点D(2,0),且将平行四边形OABC分割成面积相等的两部分,则直线DE的表达式是( )
A.y=x-2B.y=2x-4C.y=x-1D.y=3x-6
2、(4分)下列由左到右的变形,属于因式分解的是( )
A.B.
C.D.
3、(4分)观察下列图形,其中既是轴对称又是中心对称图形的是( )
A.B.C.D.
4、(4分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是( )
A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣ab
C.(a﹣b)2=a2﹣b2D.a2﹣b2=(a+b)(a﹣b)
5、(4分)人体内一种细胞的直径约为0.00000156m,数据0.00000156用科学记数法表示为( )
A.0.156×10﹣6B.1.56×10﹣6C.15.6×10﹣7D.1.56×10-8
6、(4分)若函数y=kx+b的图象如图所示,则关于x的不等式kx+b>0的解集为( )
A.x<2B.x>2C.x≤2D.x≥2
7、(4分)在Rt△ABC中,D为斜边AB的中点,且BC=3,AC=4,则线段CD的长是( )
A.2B.3C.D.5
8、(4分)下面各组数是三角形三边长,其中为直角三角形的是 ( )
A.8,12,15B.5,6,8C.8,15,17D.10,15,20
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在反比例函数图象上有三个点A(,)、B(,)、C(,),若<0<<,则,, 的大小关系是 .(用“<”号连接)
10、(4分)某公司有一名经理和10名雇员共11名员工,他们的月工资情况(单位:元)如下:30000,2350,2350,2250,2250,2250,2250,2150,2050,1950,1850.上述数据的平均数是__________,中位数是________.通过上面得到的结果不难看出:用_________(填“平均数”或“中位数”)更能准确地反映出该公司全体员工的月人均收入水平.
11、(4分)如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是______.
12、(4分)若函数是正比例函数,则常数m的值是 。
13、(4分)观察下列各式:32=4+5,52=12+13,72=24+25,92=40+41…根据发现的规律得到132= ____ + ____.
三、解答题(本大题共5个小题,共48分)
14、(12分)随着信息技术的高速发展,计算机技术已是每位学生应该掌握的基本技能.为了提高学生对计算机的兴趣,老师把甲、乙两组各有10名学生,进行电脑汉字输入速度比赛,各组参赛学生每分钟输入汉字个数统计如下表:
(1)请你填写下表中甲班同学的相关数据.
(2)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?
(3)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).
15、(8分)如图,在平行四边形ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD交于点F、G,
AF与BG交于点E.
(1)求证:AF⊥BG,DF=CG;
(2)若AB=10,AD=6,AF=8,求FG和BG的长度.
16、(8分)我市某游乐场在暑假期间推出学生个人门票优惠活动,各类门票价格如下表:
某慈善单位欲购买三种类型的门票共张奖励品学兼优的留守学生,设购买种票张,种票张数是种票的倍还多张,种票张,根据以上信息解答下列问题:
(1)写出y与x之间的函数关系式;
(2)设购票总费用为元,求(元)与(张)之间的函数关系式;
(3)为方便学生游玩,计划购买学生的夜场票不低于张,且节假日通用票至少购买张,有哪几种购票方案?哪种方案费用最少?
17、(10分)阅读下面材料:数学课上,老师出示了这祥一个问题:
如图,在正方形ABCD中,点F在AB上,点E在BC延长线上。且AF=CE,连接EF,过点D作DH⊥FE于点H,连接CH并延长交BD于点0,∠BFE=75°.求的值.某学习小组的同学经过思考,交流了自己的想法:
小柏:“通过观察和度量,发现点H是线段EF的中点”。
小吉:“∠BFE=75°,说明图形中隐含着特殊角”;
小亮:“通过观察和度量,发现CO⊥BD”;
小刚:“题目中的条件是连接CH并延长交BD于点O,所以CO平分∠BCD不是己知条件。不能由三线合一得到CO⊥BD”;
小杰:“利用中点作辅助线,直接或通过三角形全等,就能证出CO⊥BD,从而得到结论”;……;
老师:“延长DH交BC于点G,若刪除∠BFB=75°,保留原题其余条件,取AD中点M,连接MH,如果给出AB,MH的值。那么可以求出GE的长度”.
请回答:(1)证明FH=EH;
(2)求的值;
(3)若AB=4.MH=,则GE的长度为_____________.
18、(10分)在RtΔABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连接OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连接DE.
(1)如图一,当点O在RtΔABC内部时.
①按题意补全图形;
②猜想DE与BC的数量关系,并证明.
(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,且A(4,0)、B(6,2)、M(4,3).在平面内有一条过点M的直线将平行四边形OABC的面积分成相等的两部分,请写出该直线的函数表达式_____.
20、(4分)如图,在平行四边形ABCD中,,,,则平行四边形ABCD的面积为___________.
21、(4分)若直角三角形斜边上的中线等于3,则这个直角三角形的斜边长为
22、(4分)若方程的两根为,,则________.
23、(4分)解分式方程时,设,则原方程化为关于的整式方程是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示
该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量]
(1)该商场计划购进国外品牌、国内品牌两种手机各多少部?
(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润
25、(10分)已知:
(1)在直角坐标系中画出△ABC;
(2)求△ABC的面积;
(3)设点P在x轴上,且△ABP与△ABC的面积相等,请直接写出点P的坐标.
26、(12分)如图,已知菱形ABCD的对角线AC、BD交于点O,DB=2,AC=4,求菱形的周长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
过平行四边形的对称中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形对称中心的坐标,再利用待定系数法求一次函数解析式解答即可.
【详解】
解:∵点B的坐标为(8,4),
∴平行四边形的对称中心坐标为(4,1),
设直线DE的函数解析式为y=kx+b,
则,
解得,
∴直线DE的解析式为y=x-1.
故选:A.
本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.
2、C
【解析】
根据因式分解的意义,可得答案.
【详解】
A. 是整式的乘法,故A错误;
B. 没把一个多项式转化成几个整式积的形式,故B错误;
C. 把一个多项式转化成几个整式积的形式,故C正确;
D没把一个多项式转化成几个整式积的形式,故D错误.
故答案选:C.
本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.
3、D
【解析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
【详解】
A. 是中心对称图形,不是轴对称图形,选项不符合题意;
B. 是轴对称图形,不是中心对称图形,选项不符合题意;
C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;
D. 是中心对称图形,也是轴对称图形,选项符合题意,
故选D.
本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.
4、D
【解析】
利用正方形的面积公式和矩形的面积公式分别表示出阴影部分的面积,然后根据面积相等列出等式即可.
【详解】
解:第一个图形阴影部分的面积是a2﹣b2,
第二个图形的面积是(a+b)(a﹣b),
则a2﹣b2=(a+b)(a﹣b),
故选D.
本题考查了平方差公式的几何背景,正确用两种方法表示阴影部分的面积是关键.
5、B
【解析】
绝对值小于1的数可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.00000156=1.56×10﹣6.
故选B.
本题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成 的形式,其中,n是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).
6、A
【解析】
根据函数y=kx+b的图象可以判断,要使y>0,即图象在x轴的上方,此时对应x的取值范围即为不等式kx+b>0的解集.
【详解】
∵函数y=kx+b过点,即当y=0时,x=2,由图象可知
x<2时,函数图象在x轴的上方,即此时y>0,
∴不等式kx+b>0的解集为x<2,
故选:A.
考查了一次函数的图象和性质,数形结合的方法求解一次不等式的解集,熟练掌握函数的图象和性质以及和对应的一次不等式之间的关系是解题关键.
7、C
【解析】
根据勾股定理列式求出AB的长度,再根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
解:∵AC=4cm,BC=3,
∴AB= = ,
∵D为斜边AB的中点,
∴CD=AB=×5= .
故选:C.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,熟记性质是解题的关键.
8、C
【解析】
试题分析:A.82+122≠152,故不是直角三角形,错误;
B.52+62≠82,故不是直角三角形,错误;
C.82+152=172,故是直角三角形,正确;
D.102+152≠202,故不是直角三角形,错误.
故选C.
考点:勾股定理的逆定理.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据反比例函数图象上点的坐标特征解答即可;
【详解】
解:∵反比例函数图象在第二,第四象限时,y随x的增大而增大,
∵点A(,)在反比例函数图象上,<0,
∴>0,
∵B(,)、C(,)在反比例函数图象上,0<<,
∴,
∴,
故答案为:.
本题主要考查了反比例函数图象上点的坐标特征,掌握反比例函数图象上点的坐标特征是解题的关键.
10、4700 2250 中位数
【解析】
分析:
根据“平均数”、“中位数”的定义和计算方法进行计算判断即可.
详解:
(1)这组数据的平均数为:
(30000+2350+2350+2250+2250+2250+2250+2150+2050+1950+1850)÷11
=4700(元);
(2)由题中数据可知,这组数据按从大到小的顺序排列后,排在最中间的一个数是2250元,
∴这组数据的中位数是:2250;
(3)∵这组数据中多数数据更接近中位数2250,且都与平均数相差较多,
∴用“中位数”更能反映出该公司全体员工的月人均收入水平.
综上所述:本题答案为:(1)4700;(2)2250;(3)中位数.
点睛:熟记“平均数、中位数的定义和计算方法”是正确解答本题的关键.
11、
【解析】
根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有12个,而能构成一个轴对称图形的有2个情况(如图所示)
∴使图中黑色部分的图形构成一个轴对称图形的概率是.
12、-3
【解析】
根据函数是正比例函数知x的幂是一次得,m=±3,m=3不符合题意,舍去得m=-3.
13、84 1
【解析】
认真观察三个数之间的关系可得出规律:,由此规律即可解答问题.
【详解】
解:由已知等式可知,,
∴
故答案为:84、1.
本题考查了数字的规律变化,解答本题的关键是仔细观察所给式子,要求同学们能由特殊得出一般规律.
三、解答题(本大题共5个小题,共48分)
14、(1)填写表格见解析;(2)乙组成绩更好一些;(3)①从众数看,甲班众数成绩优于乙班;②从中位数看,甲班每分钟输入135字以上的人数比乙班多;③从平均数看,两班同学输入的总字数一样,成绩相当;④从方差看,甲班成绩波动小,比较稳定;⑤从最好成绩看,乙班成绩优于甲班.(至少从两个角度进行评价).
【解析】
(1)根据众数、中位数、平均数以及方差的计算公式分别进行解答即可;
(2)根据表中给出的数据,得出甲组优秀的人数有3人,乙组优秀的人数有4人,从而得出乙组成绩更好一些;
(3)从中位数看,甲组每分钟输入135字以上的人数比乙组多;从方差看,S2甲<S2乙;甲组成绩波动小,比较稳定.
【详解】
解:(1)如下表:
(2)∵每分钟输入汉字个数136及以上的甲组人数有3人,乙组有4人
∴乙组成绩更好一些
(3)①从众数看,甲班每分钟输入135字的人数最多,乙班每分钟输入134字的人数最多,甲班众数成绩优于乙班;
②从中位数看,甲班每分钟输入135字以上的人数比乙班多;
③从平均数看,两班同学输入的总字数一样,成绩相当;
④从方差看,甲的方差小于乙的方差,则甲班成绩波动小,比较稳定;
⑤从最好成绩看,乙班速度最快的选手比甲班多1人,若比较前3~4名选手的成绩,则乙班成绩优于甲班.(至少从两个角度进行评价).
此题考查了平均数、中位数、众数和方差的定义,从表中得到必要的信息是解题的关键.
15、(1)见解析(2)FG的长度为2,BG的长度为4.
【解析】
试题分析:(1)由在平行四边形ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD交于点F、G,易求得2∠BAF+2∠ABG=180°,即可得∠AEB=90°,证得AF⊥BG,易证得△ADF与△BCG是等腰三角形,即可得AD=DF,BC=CG,又由AD=BC,即可证得DF=CG;
(2)由(1)易求得DF=CG=8,CD=AB=2,即可求得FG的长;过点B作BH∥AF交DC的延长线于点H,易证得四边形ABHF为平行四边形,即可得△HBG是直角三角形,然后利用勾股定理,即可求得BG的长.
(1)证明:∵AF平分∠BAD,
∴∠DAF=∠BAF=∠BAD.
∵BG平分∠ABC,
∴∠ABG=∠CBG=∠ABC.
∵四边形ABCD平行四边形,
∴AD∥BC,AB∥CD,AD=BC,
∴∠BAD+∠ABC=180°,
即2∠BAF+2∠ABG=180°,
∴∠BAF+∠ABG=90°.
∴∠AEB=180°﹣(∠BAF+∠ABG)=180°﹣90°=90°.
∴AF⊥BG;
∵AB∥CD,
∴∠BAF=∠AFD,
∴∠AFD=∠DAF,
∴DF=AD,
∵AB∥CD,
∴∠ABG=∠CGB,
∴∠CBG=∠CGB,
∴CG=BC,
∵AD=BC.
∴DF=CG;
(2)解:∵DF=AD=1,
∴CG=DF=1.
∴CG+DF=12,
∵四边形ABCD平行四边形,
∴CD=AB=2.
∴2+FG=12,
∴FG=2,
过点B作BH∥AF交DC的延长线于点H.
∴∠GBH=∠AEB=90°.
∵AF∥BH,AB∥FH,
∴四边形ABHF为平行四边形.
∴BH=AF=8,FH=AB=2.
∴GH=FG+FH=2+2=12,
∴在Rt△BHG中:BG=(勾股定理).
∴FG的长度为2,BG的长度为.
【点评】
此题考查了平行四边形的判定与性质、等腰三角形的判定与性质、垂直的定义以及勾股定理等知识.此题综合性较强,难度较大,注意掌握数形结合思想的应用,注意掌握辅助线的作法.
16、(1);(2);(3)共有种购票方案:;;;当种票为张,种票张,种票为张时费用最少,最少费用元.
【解析】
(1)根据三种门票共购买100张,即可找出x与y之间的函数关系式;
(2)根据购票总费用=30×购买A种票数量+50×购买B种票数量+80×购买C种票数量,即可找出W(元)与x(张)之间的函数关系式;
(3)根据购买A种票不低于24张、C种票至少5张,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再利用一次函数的性质即可解决最值问题.
【详解】
解:根据题意,
所以
依题意得
解得
因为整数为
所以共有种购票方案,分别为
;
;
而
因为
所以随的增大而减小,
所以当时,
即当种票为张,种票张,种票为张时费用最少,最少费用元
本题考查了一次函数的应用以及一元一次不等式组的应用,解题的关键是:(1)根据三种门票共购买100张,找出y与x之间的函数关系式;(2)根据购票总费用=30×购买A种票数量+50×购买B种票数量+80×购买C种票数量,找出W与x之间的函数关系式;(3)根据购买A、C两种门票张数的范围,列出关于x的一元一次不等式.
17、(1)见解析;(2) ;(3)
【解析】
(1)如图1,连接DE,DF,证明△DAF≌△DCE(SAS)即可解决问题;
(2)如图2,连接BH,先证出BH=EF,再证ΔBHC≌ΔDHC,得到∠HOB=90°,OC⊥BD,∠HBO=30°,得出OH=BH,即可解决问题;
(3)如图3,连接OA,作MK⊥OA于K.首先证明OH=HC,利用平行线分线段成比例定理求出CG,再利用相似三角形的性质解决问题即可.
【详解】
(1)如图1,
连接DE,DF
∵正方形ABCD
∴AD=CD=CB=AB
∠A=∠ADC=∠BCD=∠ABC=90°
∴∠DCE=∠A=90°
∴在ΔFAD和ΔECD中
∴ΔDAF≌ΔDCE(SAS)
∴DF=DE
∵DH⊥EF
∴FH=EH
(2)如图2,连接BH,
∵ΔFAD≌ΔECD
∴∠ADF=∠CDE
∵∠ADC=90°=∠ADF+∠FDC
∴∠EDC+∠FDC=90°
∴∠FDE=90°
∴DH=EF=EH=FH
∵∠FBC=90°
∴BH=EF=EH=FH
∴BH=DH
∴在ΔBHC和ΔDHC中
∴ΔBHC≌ΔDHC(SSS)
∴∠BCH=∠DCH
∴OC⊥BD
∴∠HOB=90°
∵BH=FH,∠BFE =75°
∴∠FBH=∠BFH=75°
∵正方形ABCD
∴∠ABD=45°,∠HBO=30°
∴OH=BH
∴;
(3)解:如图3,连接OA,作MK⊥OA于K.
由(2)可知:A,O,C共线,
∴∠MAK=45°,
∵AM=MB=2,
∵CG∥AB,
由△EHG∽△BCG,可得
本题属于四边形综合题,考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.
18、 (1)①补全图形,如图一,见解析;②猜想DE=BC. 证明见解析;(2) ∠AED=30°或15°.
【解析】
(1)①根据要求画出图形即可解决问题.
②结论:DE=BC.连接OD交BC于F,连接AF.证明AF为Rt△ABC斜边中线,为△ODE的中位线,即可解决问题.
(2)分两种情形:如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.证明△BMA≌△BMO(AAS),推出AM=OM,∠BMO=∠BMA=120°,推出∠AMO=120°,即可解决问题.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.分别求解即可.
【详解】
(1)①补全图形,如图一,
②猜想DE=BC.
如图,连接OD交BC于点F,连接AF
在△BDF和△COF中,
∴△BDF≌ΔCOF
∴DF=OF,BF=CF
∴F分别为BC和DO的中点
∵∠BAC=90°,F为BC的中点,
∴AF=BC.
∵OA=AE,F为BC的中点,
∴AF=ED.
∴DE=BC
(2)如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.
由(1)可知:AF为Rt△ABC斜边中线,为△ODE的中位线,
∵AB=AC,
∴AF垂直平分线段BC,
∴MB=MC,∵∠OCB=30°,∠OBC=15°,
∴∠MBC=∠MCB=30°,
∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,∠MBO=∠MBA=15°,
∵∠BAM=∠BOM=45°,BM=BM,
∴△BMA≌△BMO(AAS),
∴AM=OM,∠BMO=∠BMA=120°,
∴∠AMO=120°,
∴∠MAO=∠MOA=30°,
∴∠AED=∠MAO=30°.
如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.
由∠BOM=∠BAM=45°,可知A,B,M,O四点共圆,
∴∠MAO=∠MBO=30°-15°=15°,
∵DE∥AM,
∴∠AED=∠MAO=15°,
综上所述,满足条件的∠AED的值为15°或30°.
本题属于三角形综合题,考查了全等三角形的判定和性质,直角三角形斜边中线的性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
如图所示:连接OB、AC相交于点E(3,1),过点E、M作直线EM,则直线EM即为所求的直线
设直线EM的解析式为y=kx+b,把E、M两点坐标代入y=kx+b中,得
解得
所以直线的函数表达式:y=2x-5.
故答案是:y=2x-5.
【点睛】此题考查了平行四边形的性质、坐标与图形性质以及利用待定系数法求一次函数的解析式,解题的关键是求出其中心对称点的坐标,过点E和点M作直线EM,再用待定系数法求直线的解析式即可.
20、
【解析】
在Rt△ACB中,,,由勾股定理可得,AC=8,再根据平行四边形的面积公式即可求解.
【详解】
∵,
∴∠ACB=90°,
在Rt△ACB中,,,
由勾股定理可得,AC=8,
∴平行四边形ABCD的面积为:BC×AC=6×8=48.
故答案为:48.
本题考查了勾股定理及平行四边形的性质,利用勾股定理求得AC=8是解决问题的关键.
21、1.
【解析】
根据直角三角形斜边中线的性质即可得.
【详解】
已知直角三角形斜边上的中线等于3,根据直角三角形斜边上的中线等于斜边的一半可得这个直角三角形的斜边长为1.
故答案为:1.
22、1
【解析】
解:∵∴
∴或.∵,∴
∴
故答案为:1.
23、
【解析】
根据换元法,可得答案.
【详解】
解:设,则原方程化为,
两边都乘以y,得:,
故答案为:.
本题考查了解分式方程,利用换元法是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)商场计划购进国外品牌手机20部,国内品牌手机30部;(2)当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.
【解析】
(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为14.8万元和两种手机的销售利润为2.7万元建立方程组求出其解即可;
(2)设甲种手机减少a部,则乙种手机增加3a部,表示出购买的总资金,由总资金部超过15.6万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a的关系式,由一次函数的性质就可以求出最大利润.
【详解】
(1)设商场计划购进国外品牌手机x部,国内品牌手机y部,由题意,得:
,
解得,
答:商场计划购进国外品牌手机20部,国内品牌手机30部;
(2)设国外品牌手机减少a部,则国内手机品牌增加3a部,由题意,得:
0.44(20-a)+0.2(30+3a)≤15.6,
解得:a≤5,
设全部销售后获得的毛利润为w万元,由题意,得:
w=0.06(20-a)+0.05(30+3a)=0.09a+2.7,
∵k=0.09>0,
∴w随a的增大而增大,
∴当a=5时,w最大=3.15,
答:当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.
25、(1)详见解析;(2)面积为4;(3)(-6,0).(10,0);
【解析】
(1)确定出点、、的位置,连接、、即可;
(2)过点向、轴作垂线,垂足为、,的面积=四边形的面积−的面积−的面积−的面积;
(3)点在轴上时,由的面积,求得:,故此点的坐标为或.
【详解】
(1)如图所示:
(2)过点向、轴作垂线,垂足为、,
四边形的面积,的面积,的面积,的面积,
的面积=四边形的面积−的面积−的面积−的面积.
(3)点在轴上,
,即:,解得:,
所以点的坐标为或.
本题主要考查的是点的坐标与图形的性质,明确的面积=四边形的面积−的面积−的面积−的面积是解题的关键.
26、
【解析】
由在菱形ABCD中,对角线AC,BD交于点O,长度分别是8和6,可求得OA与OB的长,AC⊥BD,然后由勾股定理求得AB的长,继而求得答案.
【详解】
解:∵四边形ABCD是菱形,
∴OA=AC═×4=2,OB=BD=×2=1,AC⊥BD,
∴AB==,
∴菱形的周长为4.
此题考查了菱形的性质.注意菱形的对角线互相平分且垂直且互相平分定理的应用是解此题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
输入汉字(个)
132
133
134
135
136
137
甲组人数(人)
1
0
1
5
2
1
乙组人数(人)
0
1
4
1
2
2
组
众数
中位数
平均数()
方差()
甲组
乙组
134
134.5
135
1.8
国外品牌
国内品牌
进价(万元/部)
0.44
0.2
售价(万元/部)
0.5
0.25
组
众数
中位数
平均数()
方差()
甲组
135
135
135
1.6
乙组
134
134.5
135
1.8
2025届江苏省宜兴市陶都中学数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2025届江苏省宜兴市陶都中学数学九上开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省盐城市数学九上开学质量跟踪监视试题【含答案】: 这是一份2025届江苏省盐城市数学九上开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省苏州市立达中学数学九上开学质量跟踪监视试题【含答案】: 这是一份2025届江苏省苏州市立达中学数学九上开学质量跟踪监视试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。