2025届江苏省苏州市立达中学数学九上开学质量跟踪监视试题【含答案】
展开
这是一份2025届江苏省苏州市立达中学数学九上开学质量跟踪监视试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示,在直角中,,,,是边的垂直平分线,垂足为,交边于点,连接,则的周长为( )
A.16B.15C.14D.13
2、(4分)如果一个直角三角形的两边分别是6,8,那么斜边上的中线是( )
A.4 B.5 C.4或5 D.3或5
3、(4分)如图,△DEF是由△ABC经过平移得到的,若∠C=80°,∠A=33°,则∠EDF=( )
A.33°B.80°C.57°D.67°
4、(4分)若的平均数是5,则的平均数是( )
A.5B.6C.7D.8
5、(4分)下列等式中,从左到右的变形是因式分解的是( )
A.B.
C.D.
6、(4分)下列式子为最简二次根式的是( )
A.B.C.D.
7、(4分)直角三角形中,两条直角边的边长分别为6和8,则斜边上的中线长是( )
A.10B.8C.6D.5
8、(4分)若直角三角形的两条直角边的长分别为6和8,则斜边上的中线长是( )
A.6B.5C.7D.不能确定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知直线y=kx+b和直线y=-3x平行,且过点(0,-3),则此直线与x轴的交点坐标为________.
10、(4分)已知y=1++,则2x+3y的平方根为______.
11、(4分)一水塘里有鲤鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼出现的频率为0.36,则水塘有鲢鱼________ 尾.
12、(4分)如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为 .
13、(4分)一组正方形按如图所示的方式放置,其中顶点在y轴上,顶点、、、、、、在x轴上,已知正方形的边长为1,,,则正方形的边长是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知点A(0,8)、B(8,0)、E(-2,0),动点 C从原点O出发沿OA方向以每秒1个单位长度向点A运动,动点D从点B出发沿BO方向以每秒2个单位长度向点O运动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动,设运动时间为t 秒。
(1)填空:直线AB的解析式是_____________________;
(2)求t的值,使得直线CD∥AB;
(3)是否存在时刻t,使得△ECD是等腰三角形?若存在,请求出一个这样的t值;若不存在,请说明理由。
15、(8分)已知关于的一元二次方程: ;
(1)求证:无论为何值,方程总有实数根;
(2)若方程的一个根是2,求另一个根及的值.
16、(8分)我市晶泰星公司安排名工人生产甲、乙两种产品,每人每天生产件甲产品或件乙产品.根据市场行情测得,甲产品每件可获利元,乙产品每件可获利元.而实际生产中,生产乙产品需要数外支出一定的费用,经过核算,每生产件乙产品,当天每件乙产品平均荻利减少元,设每天安排人生产乙产品.
(1)根据信息填表:
(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,试问:该企业每天生产甲、乙产品可获得总利润是多少元?
17、(10分)(知识背景)
据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.
(应用举例)
观察3,4,5;5,12,13;7,24,25;…
可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且
勾为3时,股,弦;
勾为5时,股,弦;
请仿照上面两组样例,用发现的规律填空:
(1)如果勾为7,则股24= 弦25=
(2)如果勾用(,且为奇数)表示时,请用含有的式子表示股和弦,则股= ,弦= .
(解决问题)
观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:
(3)如果是符合同样规律的一组勾股数,(表示大于1的整数),则 , ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式.
(4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、1.
18、(10分)解不等式组,并将解集在数轴上表示出来.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种甜玉米各用10块试验田进行实验,得到这两个品种甜玉米每公顷产量的两组数据(如图所示).根据图6中的信息,可知在试验田中,____种甜玉米的产量比较稳定.
20、(4分)关于x的方程3x+a=x﹣7的根是正数,则a的取值范围是_____.
21、(4分)不等式9﹣3x>0的非负整数解是_____.
22、(4分)反比例函数y=的图像在其每一象限内,y随x的增大而减小,则k的值可以是______.(写出一个数值即可)
23、(4分)若一个三角形的三边长为6,8,10,则最长边上的高是____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组:,并将解集在数轴上表示出来.
25、(10分)端午节前夕,小东妈妈准备购买若干个粽子和咸鸭蛋(每个棕子的价格相同,每个咸鸭蛋的价格相同).已知某超市粽子的价格比咸鸭蛋的价格贵1.8元,小东妈妈发现,花30元购买粽子的个数与花12元购买的咸鸭蛋个数相同.
(1)求该超市粽子与咸鸭蛋的价格各是多少元?
(2)小东妈妈计划购买粽子与咸鸭蛋共18个,她的一张购物卡上还有余额40元,若只用这张购物卡,她最多能购买粽子多少个?
26、(12分)如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.
EF与BD相交于点M.
(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
首先连接AE,由在直角△ABC中,∠BAC=90°,AB=8,AC=6,利用勾股定理即可求得BC的长,又由DE是AB边的垂直平分线,根据线段垂直平分线的性质,即可得AE=BE,继而可得△ACE的周长为:BC+AC.
【详解】
连接AE,
∵在Rt△ABC中,∠BAC=90∘,AB=8,AC=6,
∴BC=
∵DE是AB边的垂直平分线,
∴AE=BE,
∴△ACE的周长为:AE+EC+AC=BE+CE+AC=BC+AC=10+6=16,
故选A.
本题考查勾股定理,熟练掌握勾股定理的性质是解题关键.
2、C
【解析】当一个直角三角形的两直角边分别是6,8时,
由勾股定理得,斜边==10,则斜边上的中线=×10=5,
当8是斜边时,斜边上的中线是4,
故选C.
3、A
【解析】
根据平移的性质,得对应角∠EDF=∠A,即可得∠EDF的度数.
【详解】
解:在△ABC中,∠A=33°,
∴由平移中对应角相等,得∠EDF=∠A=33°.
故选:A.
此题主要考查了平移的性质,解题时,注意运用平移中的对应角相等.
4、C
【解析】
先根据平均数的概念列出关于m的方程,解之求出m的值,据此得出新数据,继而根据平均数的概念求解可得.
【详解】
解:根据题意,有
,
∴解得:,
∴.
故选:C.
本题主要考查算术平均数,解题的关键是掌握算术平均数的概念进行解题.
5、D
【解析】
根据因式分解的定义,逐一判断选项,即可得到答案.
【详解】
∵是整式的乘法,不是因式分解,
∴A不符合题意,
∵不是因式分解,
∴B不符合题意,
∵不是因式分解,
∴C不符合题意,
∵是因式分解,
∴D符合题意.
故选D.
本题主要考查因式分解的定义,掌握因式分解的定义,是解题的关键.
6、A
【解析】
解:选项A,被开方数不含分母;被开方数不含能开得尽方的因数或因式, A符合题意;
选项B,被开方数含能开得尽方的因数或因式,B不符合题意;
选项C,被开方数含能开得尽方的因数或因式, C不符合题意;
选项D,被开方数含分母, D不符合题意,
故选A.
7、D
【解析】
如图,根据勾股定理求出AB,根据直角三角形斜边上中线求出CD=AB即可.
【详解】
解:如图,
∵∠ACB=90°,AC=6,BC=8,由勾股定理得:
AB==10,
∵CD是△ABC中线,
∴CD=AB=×10=5,
故选D.
本题主要考查对勾股定理,直角三角形斜边上的中线等知识点的理解和掌握,能推出CD=AB是解此题的关键.
8、B
【解析】
首先根据勾股定理,求出斜边长,然后根据直角三角形斜边中线定理,即可得解.
【详解】
根据勾股定理,得斜边长为
则斜边中线长为5,
故答案为B.
此题主要考查勾股定理和斜边中线定理,熟练掌握,即可解题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 (−1,0).
【解析】
先根据直线平行的问题得到k=-3,再把(0,-3)代入y=-3x+b求出b,从而得到直线解析式,然后计算函数值为0所对应的自变量的值即可得到直线与x轴的交点坐标.
【详解】
∵直线y=kx+b和直线y=−3x平行,
∴k=−3,
把(0,−3)代入y=−3x+b得b=−3,
∴直线解析式为y=−3x−3,
当y=0时,−3x−3=0,解得x=−1,
∴直线y=−3x−3与x轴的交点坐标为(−1,0).
故答案为(−1,0).
此题考查两条直线相交或平行问题,把已知点代入解析式是解题关键
10、±2
【解析】
先根据二次根式有意义的条件求出x的值,进而得出y的值,根据平方根的定义即可得出结论.
【详解】
解:由题意得,,
,
,
,
的平方根为.
故答案为.
本题考查二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解题的关键
11、1
【解析】
由于水塘里有鲤鱼、鲢鱼共10000尾,而鲤鱼出现的频率为0.36,由此得到水塘有鲢鱼的频率,然后乘以总数即可得到水塘有鲢鱼又多少尾.
【详解】
∵水塘里有鲤鱼、鲢鱼共10000尾,
一渔民通过多次捕捞实验后发现,鲤鱼出现的频率为0.36,
∴鲢鱼出现的频率为64%,
∴水塘有鲢鱼有10000×64%=1尾.
故答案是:1.
考查了利用频率估计概率的思想,首先通过实验得到事件的频率,然后即可估计事件的概率.
12、
【解析】
试题分析:∵AB=12,BC=1,∴AD=1.
∴.
根据折叠可得:AD=A′D=1,∴A′B=13-1=2.
设AE=x,则A′E=x,BE=12-x,
在Rt△A′EB中:,解得:.
13、
【解析】
利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
【详解】
正方形的边长为1,,,
,,,
,
则,
同理可得:,
故正方形的边长是:,
则正方形的边长为:,
故答案为:.
此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
分析:(1)由点A、B的坐标,利用待定系数法求出直线解析式即可;
(2)当CD∥AB时,∠CDO=∠ABO,根据tan∠CDO=tan∠ABO列方程求解即可;
(3)当EO=DO时,△ECD是等腰三角形,从而可求出t的值.
详解:(1)将点A(0,1)、B(1,0)代入y=kx+b中,
得:,解得:,
∴该直线的解析式为y=-x+1.
故答案为:y=-x+1.
(2)当直线AB∥CD时,∠CDO=∠ABO,
∴tan∠CDO=tan∠ABO
∴,解得,.
故当时,AB∥CD.
(3)存在.事实上,当EO=OD时,△ECD就是等腰三角形,
此时,EO=2,OD=1-2t,
由,
解得,.
∴存在时刻T,当时,△ECD是等腰三角形
点睛:本题考查了待定系数法求函数解析式、平行线的判定与性质,等腰三角形的判定以及解一元一次方程,解题的关键是:(1)利用待定系数法求出函数解析式;(2)①得出关于t的一元一次方程;②得出关于t的一元一次方程.
15、(1)详见解析;(2),
【解析】
(1)根据根的判别式得出△=(k﹣3)2≥0,从而证出无论k取任何值,方程总有实数根.
(2)先把x=2代入原方程,求出k的值,再解这个方程求出方程的另一个根.
【详解】
(1)证明:(方法一).
∴无论为何值时,方程总有实数根.
(方法二)将代人方程,等式成立,即是原方程的解,
因此,无论为何值时,方程总有实数根,
(2)把代人方程解得,
解方程得
本题主要考查了一元二次方程的根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
16、 (1) ;;;(2)该企业每天生产甲、乙产品可获得总利润是元.
【解析】
(1)设每天安排x人生产乙产品,则每天安排(65-x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120-2x)元,每天可生产2(65-x)件甲产品,此问得解;
(2)由总利润=每件产品的利润×生产数量结合每天生产甲产品可获得的利润比生产乙产品可获得的利润多650元,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.
【详解】
解:(1)设每天安排x人生产乙产品,则每天安排(65-x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120-2x)元,每天可生产2(65-x)件甲产品.
故答案为:;;;
(2)依题意,得:15×2(65-x)-(120-2x)•x=650,
整理,得:x2-75x+650=0,
解得:x1=10,x2=65(不合题意,舍去),
∴15×2(65-x)+(120-2x)•x=2650,
答:该企业每天生产甲、乙产品可获得总利润是2650元.
本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x的代数式表示出每天生产甲产品的数量及每件乙产品的利润;(2)找准等量关系,正确列出一元二次方程.
17、(1);;(2);;(3);;(4)10;26; 12;2;
【解析】
(1)依据规律可得,如果勾为7,则股24=,
弦25=;
(2)如果勾用n(n≥3,且n为奇数)表示时,则股=,
弦=;
(3)根据规律可得,如果a,b,c是符合同样规律的一组勾股数,a=2m(m表示大于1的整数),则b=m2-1,c=m2+1;
(4)依据柏拉图公式,若m2-1=24,则m=5,2m=10,m2+1=26;若m2+1=1,则m=6,2m=12,m2-1=2.
【详解】
解:(1)依据规律可得,如果勾为7,则股24=,
弦25=;
故答案为:;;
(2)如果勾用n(n≥3,且n为奇数)表示时,则股=,
弦=;
故答案为:;;
(3)根据规律可得,如果a,b,c是符合同样规律的一组勾股数,a=2m(m表示大于1的整数),则b=m2-1,c=m2+1;
故答案为:m2-1,m2+1;
(4)依据柏拉图公式,
若m2-1=24,则m=5,2m=10,m2+1=26;
若m2+1=1,则m=6,2m=12,m2-1=2;
故答案为:10、26;12、2.
此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.
18、,数轴表示见解析
【解析】
分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
【详解】
解:由①去括号、移项、合并同类项,得,
解得;
由②去分母、移项、合并同类项,得
解得
所以不等式组的解集为
不等式组的解集在数轴上表示为:
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、乙
【解析】
试题分析:从图中看到,乙的波动比甲的波动小,故乙的产量稳定.故填乙.
考点:方差;折线统计图.
点评:本题要求了解方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
20、a<﹣7
【解析】
求出方程的解,根据方程的解是正数得出>0,求出即可.
【详解】
解:3x+a=x-7
3x-x=-a-7
2x=-a-7
x=,
∵>0,
∴a<-7,
故答案为:a<-7
本题考查解一元一次不等式和一元一次方程的应用,关键是求出方程的解进而得出不等式.
21、0、1、1
【解析】
首先移项,然后化系数为1即可求出不等式的解集,最后取非负整数即可求解.
解:9﹣3x>0,
∴﹣3x>﹣9,
∴x<3,
∴x的非负整数解是0、1、1.
故答案为0、1、1.
22、1
【解析】
∵反比例函数y=的图象在每一象限内,y随x的增大而减小,
∴,解得.
∴k可取的值很多,比如:k=1.
23、4.1
【解析】
分析:首先根据勾股定理的逆定理可判定此三角形是直角三角形,再根据三角形的面积公式求得其最长边上的高.
详解:∵三角形的三边长分别为6,1,10,符合勾股定理的逆定理62+12=102,∴此三角形为直角三角形,则10为直角三角形的斜边,
设三角形最长边上的高是h,
根据三角形的面积公式得:×6×1=×10h,
解得:h=4.1.
故答案为:4.1.
点睛:考查了勾股定理的逆定理,解答此题的关键是先判断出三角形的形状,再根据三角形的面积公式解答.
二、解答题(本大题共3个小题,共30分)
24、-7<≤1.数轴见解析.
【解析】
分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
【详解】
解:
解不等式①,得≤1
解不等式②,得>-7
∴不等式组的解集为-7<≤1.
在数轴上表示不等式组的解集为
故答案为-7<≤1.
本题考查了解一元一次不等式组,熟知“大大取大,小小取小,大小小大中间找,大大小小找不了“的原则是解此题的关键.
25、(1)咸鸭蛋的价格为1.2元,粽子的价格为3元(2)她最多能购买粽子10个
【解析】
(1)设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,列出分式方程,求出方程的解得到x的值,即可得到结果.
(2)设小东妈妈能购买粽子y个,根据题意列出不等式解答即可.
【详解】
(1)设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,
根据题意得:,
去分母得:30x=12x+21.6,
解得:x=1.2,
经检验x=1.2是分式方程的解,且符合题意,
1.8+x=1.8+1.2=3(元),
故咸鸭蛋的价格为1.2元,粽子的价格为3元.
(2)设小东妈妈能购买粽子y个,根据题意可得:3y+1.2(18﹣y)≤40,
解得:y≤,
因为y取整数,
所以y的最大值为10,
答:她最多能购买粽子10个
此题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.航行问题常用的等量关系为:花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同.
26、(1)证明见解析(2)3
【解析】
试题分析:(1)要证明△EDM∽△FBM成立,只需要证DE∥BC即可,而根据已知条件可证明四边形BCDE是平行四边形,从而可证明相似;
(2)根据相似三角形的性质得对应边成比例,然后代入数值计算即可求得线段的长.
试题解析:(1)证明:∵AB="2CD" , E是AB的中点,∴BE=CD,又∵AB∥CD,∴四边形BCDE是平行四边形,∴BC∥DE, BC=DE,∴△EDM∽△FBM;
(2)∵BC=DE, F为BC的中点,∴BF=DE,∵△EDM∽△FBM,∴,∴BM=DB,又∵DB=9,∴BM=3.
考点:1. 梯形的性质;2. 平行四边形的判定与性质;3. 相似三角形的判定与性质.
题号
一
二
三
四
五
总分
得分
产品种类
每天工人数(人)
每天产量(件)
每件产品可获利润(元)
甲
乙
相关试卷
这是一份2025届江苏省苏州市新区一中学数学九上开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省淮安市凌桥乡初级中学数学九上开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年上海市复旦初级中学数学九上开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。