|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省南师大附中树人学校2024年数学九上开学达标检测试题【含答案】
    立即下载
    加入资料篮
    江苏省南师大附中树人学校2024年数学九上开学达标检测试题【含答案】01
    江苏省南师大附中树人学校2024年数学九上开学达标检测试题【含答案】02
    江苏省南师大附中树人学校2024年数学九上开学达标检测试题【含答案】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省南师大附中树人学校2024年数学九上开学达标检测试题【含答案】

    展开
    这是一份江苏省南师大附中树人学校2024年数学九上开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列调查中,适宜采用普查方式的是( )
    A.调查一批新型节能灯泡的使用寿命
    B.调查常熟市中小学生的课外阅读时间
    C.对全市中学生观看电影《厉害了,我的国》情况的调查
    D.对卫星“张衡一号”的零部件质量情况的调查
    2、(4分)方程x2+x﹣12=0的两个根为( )
    A.x1=﹣2,x2=6B.x1=﹣6,x2=2C.x1=﹣3,x2=4D.x1=﹣4,x2=3
    3、(4分)某多边形的每个内角均为120°,则此多边形的边数为( ).
    A.5 B.6 C.7 D.8
    4、(4分)据《南昌晚报》2019 年 4 月 28 日报道,“五一”期间南昌天气预报气温如下:
    则“五一”期间南昌天气预报气温日温差最大的时间是( )
    A.4 月 29 日B.4 月 30 日C.5 月 1 日D.5 月 3 日
    5、(4分)如图,直角坐标系中有两点A(5,0),B(0,4),A,B两点间的距离为( )
    A.3B.7C.D.9
    6、(4分)在函数y=中,自变量x的取值范围是( )
    A.x>1B.x<1C.x≠1D.x=1
    7、(4分)如图,直线y=﹣x+4与x轴、y轴分别交于点A、B、C是线段AB上一点,四边形OADC是菱形,则OD的长为( )
    A.4.2B.4.8C.5.4D.6
    8、(4分)下列曲线中能表示是的函数的是( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若在实数范围内有意义,则的取值范围为_________________.
    10、(4分)两个相似三角形最长边分别为10cm和25cm,它们的周长之差为60cm,则这两个三角形的周长分别是。
    11、(4分)如图,直线经过点,则关于的不等式的解集是______.
    12、(4分)当x=__________时,分式无意义.
    13、(4分)如图,在中,,、分别是、的中点,延长到点,使,则_____________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,等腰直角三角形 AEF 的顶点 E 在等腰直角三角形 ABC 的边 BC上.AB 的延长线交 EF 于 D 点,其中∠AEF=∠ABC=90°.
    (1)求证:
    (2)若 E 为 BC 的中点,求的值.
    15、(8分)计算
    (1)计算:
    (2)分解因式:
    16、(8分)在四边形ABCD中,E、F分别是边BC、CD的中点,连接AE,AF.
    (1)如图1,若四边形ABCD的面积为5,则四边形AECF的面积为____________;
    (2)如图2,延长AE至G,使EG=AE,延长AF至H,使FH=AF,连接BG、GH、HD、DB.
    求证:四边形BGHD是平行四边形;
    (3)如图3,对角线 AC、BD相交于点M, AE与BD交于点P, AF与BD交于点N. 直接写出BP、PM、MN、ND的数量关系.
    17、(10分)已知:如图,在△ABC中,∠ACB=90°,点D是斜边AB的中点,DE∥BC,且CE=CD.
    (1)求证:∠B=∠DEC;
    (2)求证:四边形ADCE是菱形.
    18、(10分)已知一次函数的图象经过点和.
    (1)求这个一次函数的解析式
    (2)不等式的解集是 .(直接写出结果即可)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分))如图,Rt△ABC中,C= 90,以斜边AB为边向外作正方形 ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=6,则另一直角边BC的长为 .
    20、(4分)已知,则的值为__________.
    21、(4分)当二次根式的值最小时,=______.
    22、(4分)任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有_____.
    23、(4分)若等腰三角形的顶角与一个底角度数的比值等于,该等腰三角形的顶角为_________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)(1) ;
    (2).
    25、(10分)定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“快乐分式”.如:,则 是“快乐分式”.
    (1)下列式子中,属于“快乐分式”的是 (填序号);
    ① ,② ,③ ,④ .
    (2)将“快乐分式”化成一个整式与一个分子为常数的分式的和的形式为: = .
    (3)应用:先化简 ,并求x取什么整数时,该式的值为整数.
    26、(12分)如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),线段OA上的动点M(与O,A不重合)从A点以每秒1个单位的速度沿x轴向左移动。
    (1)求A、B两点的坐标;
    (2)求△COM的面积S与M的移动时间t之间的函数关系式,并写出t的取值范围;
    (3)当t何值时△COM≌△AOB,并求此时M点的坐标。
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
    【详解】
    A.调查一批新型节能灯泡的使用寿命适合抽样调查;
    B.调查盐城市中小学生的课外阅读时间适合抽样调查;
    C.对全市中学生观看电影《流浪地球》情况的调查适合抽样调查;
    D.对量子通信卫星的零部件质量情况的调查必须进行全面调查,
    故选D.
    本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    2、D
    【解析】
    利用因式分解法解方程即可得出结论.
    【详解】
    解:x2+x-12=0
    (x+4)(x-1)=0,
    则x+4=0,或x-1=0,
    解得:x1=-4,x2=1.
    故选:D.
    本题考查因式分解法解一元二次方程,熟练掌握因式分解的方法是解题的关键.
    3、B
    【解析】先求出多边形的每一个外角的度数,再利用多边形的外角和即可求出答案.
    解: ∵多边形的每一个内角都等于120°,多边形的内角与外角互为邻补角,
    ∴每个外角是度60°,
    多边形中外角的个数是360÷60°=60°,则多边形的边数是6.
    故选B.
    4、C
    【解析】
    根据极差的公式:极差=最大值-最小值.找出所求数据中最大的值,最小值,再代入公式求值即可.
    【详解】
    4 月 29 日的温差:22-18=4
    4 月 30 日的温差:24-18=6
    5 月 1 日的温差:27-19=8
    5 月 2 日的温差:22-18=4
    5 月 3 日的温差:24-19=5
    故5月1日温差最大,为8
    故选:C
    本题考查了极差,掌握极差公式: 极差=最大值-最小值是解题的关键.
    5、C
    【解析】
    根据勾股定理求解即可.
    【详解】
    ∵A(5,0),B(0,4),
    ∴OA=5,OB=4,
    ∴AB===,
    故选:C.
    本题考查了勾股定理,掌握知识点是解题关键.
    6、C
    【解析】
    试题解析:根据题意,有x-1≠0,
    解得x≠1;
    故选C.
    考点:1.函数自变量的取值范围;2.分式有意义的条件.
    7、B
    【解析】
    由直线的解析式可求出点B、A的坐标,进而可求出OA、OB的长,再利用勾股定理即可求出AB的长,由菱形的性质可得OE⊥AB,OE=DE,再根据直角三角形的面积可求出OE的长,进而可求出OD的长.
    【详解】
    解:∵直线y=﹣x+4与x轴、y轴分别交于点A、B,
    ∴点A(3,0)、点B(0,4),
    ∴OA=3,OB=4,
    ∴AB=,
    ∵四边形OADC是菱形,
    ∴OE⊥AB,OE=DE,
    由直角三角形的面积得,
    即3×4=5×OE.
    解得:OE=2.4,
    ∴OD=2OE=4.8.
    故选B.
    本题考查了菱形的性质和一次函数与坐标轴的交点问题,难度不大,题目设计新颖,解题的关键是把求OD的长转化为求直角△AOB斜边上的高OE的长的2倍.
    8、D
    【解析】
    根据函数的定义,每一个自变量x都有唯一的y值和它对应即可解题.
    【详解】
    解:由函数的定义可知,x与y的对应关系应该是一对一的关系或多对一的关系,据此排除A,B,C,
    故选D.
    本题考查了函数的定义,属于简单题,熟悉函数定义的对应关系是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据根式有意义的条件,得到不等式,解出不等式即可
    【详解】
    要使有意义,则需要,解出得到
    本题考查根式有意义的条件,能够得到不等式是解题关键
    10、40cm,100cm
    【解析】设最长边为10cm的多边形周长为x,则最长边为24cm的多边形的周长为(x+60)cm.
    ∵周长之比等于相似比.
    ∴10/25 =x/(x+60).
    解得x=40cm,x+60=100cm.
    11、
    【解析】
    写出函数图象在x轴下方所对应的自变量的范围即可.
    【详解】
    解:观察图像可知:当x>2时,y<1.
    所以关于x的不等式kx+3<1的解集是x>2.
    故答案为:x>2.
    本题考查了一次函数与一元一次不等式的关系.y=kx+b与kx+b>1、kx+b<1的关系是:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.整体是就是体现数形结合的思想.
    12、1
    【解析】
    根据分式无意义的条件:分母等于0,进行计算即可.
    【详解】
    ∵分式无意义,
    ∴,
    ∴.
    故答案为:1.
    本题考查分式有无意义的条件,明确“分母等于0时,分式无意义;分母不等于0时,分式有意义”是解题的关键.
    13、2
    【解析】
    连接EF、AE,证四边形AEFD是平行四边形,注意应用直角三角形斜边上的中线等于斜边的一半和平行四边形的性质:平行四边形的对边相等,求得AE长即可.
    【详解】
    连接EF,AE.
    ∵点E,F分别为BC,AC的中点,
    ∴EF∥AB,EF=AB.
    又∵AD=AB,
    ∴EF=AD.
    又∵EF∥AD,
    ∴四边形AEFD是平行四边形.
    在Rt△ABC中,
    ∵E为BC的中点,BC=4,
    ∴AE=BC=2.
    又∵四边形AEFD是平行四边形,
    ∴DF=AE=2.
    本题主要考查了平行四边形判定,有中点时需考虑运用三角形的中位线定理或则直角三角形斜边上的中线等于斜边的一半.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)
    【解析】
    (1)由△AEF、△ABC是等腰直角三角形,易证得△FAD∽△CAE,然后由相似三角形的对应边成比例,可得 ,又由等腰直角三角形的性质,可得AF= AE,即可证得;
    (2)首先设BE=a,由射影定理,可求得DB的长,继而可求得DA的长,即可求得答案.
    【详解】
    (1)证明:∵△AEF、△ABC是等腰直角三角形,
    ∴∠EAF=∠BAC=45°,∠F=∠C=45°,
    ∴∠FAD=∠CAE,
    ∴△FAD∽△CAE,
    ∴,
    ∵∠AEF=90°,AE=EF,
    ∴AF=AE,
    ∴;
    (2)设BE=a,
    ∵E为BC的中点,
    ∴EC=BE=a,AB=BC=2a,
    ∵∠AEF=∠ABC=90°,
    ∴BE =AB⋅DB,
    ∴DB= ,
    ∵DA=DB+AB,
    ∴DA= ,
    ∴= .
    此题考查相似三角形的判定与性质,等腰直角三角形,解题关键在于证明△FAD∽△CAE
    15、 (1) ;(2).
    【解析】
    (1)原式第一项利用多项式乘以多项式法则计算,第二项利用多项式除以单项式法则计算即可得到结果;
    (2)原式提取公因式,再利用完全平方公式分解即可.
    【详解】
    (1)原式=2a2−2ab+ab−b2−2a2+ab=−b2;
    (2)原式=-xy(x2-4xy+4y2)=−xy(x−2y)2.
    本题考查的知识点是整式的混合运算, 提公因式法与公式法的综合运用,解题的关键是熟练的掌握整式的混合运算, 提公因式法与公式法的综合运用.
    16、(1)(2)证明见解析(3).
    【解析】
    (1)连接AC,根据三角形中线把三角形分成两个面积相等的三角形进行解答即可得;
    (2)连接EF,根据三角形中位线定理可得到BD与GH平行且相等,由此即可得证;
    (3)如图,延长PE至点Q,使EQ=EP,连接CQ,延长NF至点O,使OF=NG,连接CO,通过证明△BPE≌△CQE可得BP=CQ,BP//CQ,同理:CO=ND,CO//ND,从而可得Q、C、O三点共线,继而通过证明△APM∽△AQC,可得PM:CQ=AM:AC,同理:MN:CO=AM:AC,即可得答案.
    【详解】
    (1)如图,连接AC,则有S△ABC+S△ACD= S四边形ABCD=5,
    ∵E、F分别为BC、CD中点,
    ∴S△AEC=S△ABC,S△AFC=S△ADC,
    ∴S四边形AECF=S△AEC+S△AFC=S△ABC+S△ADC= S四边形ABCD=,
    故答案为:;

    (2)如图,连接EF,
    ∵E、F分别是BC,CD的中点,
    ∴EF∥BD,EF=BD.,
    ∵EG=AE,FH=AF,
    ∴EF∥GH,EF=GH.,
    ∴BD∥GH,BD=GH.,
    ∴四边形BGHD是平行四边形;
    (3)如图,延长PE至点Q,使EQ=EP,连接CQ,
    延长NF至点O,使OF=NG,连接CO,
    在△BPE和△CQE中

    ∴△BPE≌△CQE(SAS),
    ∴BP=CQ,∠PBE=∠QCE,
    ∴BP//CQ,
    同理:CO=ND,CO//ND,
    ∴Q、C、O三点共线,
    ∴BD//OQ,
    ∴△APM∽△AQC,
    ∴PM:CQ=AM:AC,
    同理:MN:CO=AM:AC,
    ∴.
    本题考查了三角形中线的性质、三角形中位线定理、平行四边形的判定、全等三角形的判定与性质、相似三角形的判定与性质等,综合性较强,熟练掌握相关知识、正确添加辅助线是解题的关键.
    17、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)根据直角三角形斜边上的中线等于斜边的一半,得到DB=DC,从而∠B=∠DCB,由DE∥BC,得到∠DCB=∠CDE,由CE=CD,得到∠CDE=∠DEC,利用等量代换,得到∠B=∠DEC;
    (2)先利用一组对边平行且相等的四边形是平行四边形,证明四边形ADCE是平行四边形,再由CD=CE,证明平行四边形ADCE是菱形.
    【详解】
    (1)证明:在△ABC中,∵∠ACB=90°,点D是斜边AB的中点,
    ∴CD=DB,
    ∴∠B=∠DCB,
    ∵DE∥BC,
    ∴∠DCB=∠CDE,
    ∵CD=CE,
    ∴∠CDE=∠CED,
    ∴∠B=∠CED.
    (2)证明:∵DE∥BC,
    ∴∠ADE=∠B,
    ∵∠B=∠DEC,
    ∴∠ADE=∠DEC,
    ∴AD∥EC,
    ∵EC=CD=AD,
    ∴四边形ADCE是平行四边形,
    ∵CD=CE,
    ∴四边形ADCE是菱形.
    故答案为:(1)证明见解析;(2)证明见解析.
    本题考查了直角三角形的性质,菱形的判定.
    18、 (1) ;(2)x>1.
    【解析】
    (1)将两点代入,运用待定系数法求解;
    (2)把y=5代入y=2x-1解得,x=1,然后根据一次函数是增函数,进而得到关于x的不等式kx+b〉5的解集是x>1.
    【详解】
    解:(1)的图象过点,
    ,
    解得:,
    .
    (2)∵k=2>0,
    ∴y随x的增大而增大,
    把y=5代入y=2x-1解得,x=1,
    ∴当x>1时,函数y>5.
    考查待定系数法求函数解析式,一次函数与一元一次不等式,关键是掌握数形结合思想.认真体会一次函数与一元一次不等式之间的内在联系.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、4.
    【解析】
    正方形的性质,全等三角形的判定和性质,矩形的判定和性质,等腰直角三角形的判定和性质,勾股定理.
    【分析】如图,过O作OF垂直于BC,再过O作OF⊥BC,过A作AM⊥OF,
    ∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB.
    ∴∠AOM+∠BOF=90°.
    又∵∠AMO=90°,∴∠AOM+∠OAM=90°.∴∠BOF=∠OAM.
    在△AOM和△BOF中,
    ∵∠AMO=∠OFB=90°,∠OAM=∠BOF, OA=OB,
    ∴△AOM≌△BOF(AAS).∴AM=OF,OM=FB.
    又∵∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形.∴AM=CF,AC=MF=2.
    ∴OF=CF.∴△OCF为等腰直角三角形.
    ∵OC=3,∴根据勾股定理得:CF2+OF2=OC2,即2CF2=(3)2,解得:CF=OF=3.
    ∴FB=OM=OF-FM=3-2=4.∴BC=CF+BF=3+4=4.
    20、
    【解析】
    根据二次根式有意义的条件可求得x的值,继而可求得y值,代入所求式子即可求得答案.
    【详解】
    由题意得,
    解得:x=4,
    所以y=3,
    所以=,
    故答案为:.
    本题考查了二次根式有意义的条件,熟练掌握是解题的关键.
    21、1
    【解析】
    直接利用二次根式的定义分析得出答案.
    【详解】
    ∵二次根式的值最小,
    ∴,解得:,
    故答案为:1.
    本题主要考查了二次根式的定义,正确把握定义是解题关键.
    22、2
    【解析】
    把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.
    【详解】
    ∵2=1×2,∴F(2)=,故(1)是正确的;
    ∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;
    ∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;
    ∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的,∴正确的有(1),(4).
    故答案为2.
    本题考查了题目信息获取能力,解决本题的关键是理解答此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).
    23、360
    【解析】
    根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.
    【详解】
    ∵△ABC中,AB=AC,
    ∴∠B=∠C,
    ∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k= ,
    ∴∠A:∠B=1:2,
    即5∠A=180°,
    ∴∠A=36°,
    故答案为:36°
    此题考查等腰三角形的性质,三角形内角和定理,解题关键在于得到5∠A=180°
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2).
    【解析】
    (1)先利用平方差公式化简后面两个括号,再根据二次根式的运算法则进行计算即可得出答案;
    (2)先利用平方差公式和完全平方公式进行展开,再根据二次根式的运算法则进行计算即可得出答案.
    【详解】
    解:(1)原式=
    (2)原式=
    本题考查的是二次根式的运算,难度适中,需要熟练掌握二次根式的运算法则.
    25、 (1)①②③;(2);(3),x=-3
    【解析】
    (1)根据快乐分式的定义分析即可;
    (2)根据快乐分式的定义变形即可;
    (3)先化简,再根据快乐分式的定义变形,然后再根据x的值和分式的值为整数讨论即可.
    【详解】
    解:(1)①,是快乐分式 ,
    ② ,是快乐分式,
    ③ ,是快乐分式,
    ④ 不是分式,故不是快乐分式.
    故答案为:①②③ ;
    (2) 原式= = ;
    (3)原式=
    = =
    = =
    ∵当或 时,分式的值为整数,
    ∴x的值可以是0或或1或,
    又∵分式有意义时,x的值不能为0、1、,

    本题考查了新定义运算,以及分式的混合运算.熟练掌握运算法则及快乐分式的定义是解本题的关键.
    26、(1)A(4,0)、B(0,2)
    (2)当0(3)当t=2秒时△COM≌△AOB,此时M(2,0)
    【解析】
    (1)根据一次函数与x轴,y轴的交点坐标特点,即将x=0时;当y=0时代入函数解析式,即可求得A、B点的坐标.
    (2)根据S△OCM=×OC·OM代值即可求得S与M的移动时间t之间的函数关系式,再根据M在线段OA上以每秒1个单位运动,且OA=4,即可求得t的取值范围
    (3)根据在△COM和△AOB,已有OA=OC,∠AOB=∠COM,M在线段OA上,故可知OB=OM=2时,△COM≌△AOB,进而即可解题.
    【详解】
    解:(1)对于直线AB:
    当x=0时,y=2;当y=0时,x=4
    则A、B两点的坐标分别为A(4,0)、B(0,2)
    (2)∵C(0,4),A(4,0)
    ∴OC=OA=4,
    故M点在0(3)∵当M在OA上,OA=OC
    ∴OB=OM=2时,△COM≌△AOB.
    ∴AM=OA-OM=4-2=2
    ∴动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间t=2秒钟,此时M(2,0),
    本题考查了一次函数求坐标,一次函数与三角形综合应用,解本题的关键是掌握动点M的运动时间及运动轨迹,从而解题.
    题号





    总分
    得分
    时间
    4 月 29 日
    4 月 30 日
    5 月 1 日
    5 月 2 日
    5 月 3 日
    最低气温
    18℃
    18℃
    19℃
    18℃
    19℃
    最高气温
    22℃
    24℃
    27℃
    22℃
    24℃
    相关试卷

    2024年江苏省扬州树人学校数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024年江苏省扬州树人学校数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省南京师大附中树人学校数学九上开学学业质量监测试题【含答案】: 这是一份2024年江苏省南京师大附中树人学校数学九上开学学业质量监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省南京市南师附中树人学校数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年江苏省南京市南师附中树人学校数学九年级第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map