终身会员
搜索
    上传资料 赚现金

    2024年江苏省扬州市树人学校数学九上开学监测试题【含答案】

    立即下载
    加入资料篮
    2024年江苏省扬州市树人学校数学九上开学监测试题【含答案】第1页
    2024年江苏省扬州市树人学校数学九上开学监测试题【含答案】第2页
    2024年江苏省扬州市树人学校数学九上开学监测试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年江苏省扬州市树人学校数学九上开学监测试题【含答案】

    展开

    这是一份2024年江苏省扬州市树人学校数学九上开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,直线与反比例函数的图象交于,两点.若点的坐标是,则点的坐标是( )
    A.B.C.D.
    2、(4分)已知一次函数,若随的增大而减小,则该函数的图像经过( )
    A.第一、二、三象限B.第二、三、四象限
    C.第一、二、四象限D.第一、三、四象限
    3、(4分)一种微粒的半径是4×10-5米,用小数表示为( )
    A.0.000004米B.0.000004米C.0.00004米D.0.0004米
    4、(4分)如图所示,在四边形中, ,要使四边形成为平行四边形还需要条件( )

    A.B.C.D.
    5、(4分)一天李师傅骑车上班途中因车发生故除,修车耽误了一段时间后继续骑行,按时赶到了单位,如图描述了他上班途中的情景,下列说法中错误的是( )
    A.李师傅上班处距他家200米
    B.李师傅路上耗时20分钟
    C.修车后李师傅骑车速度是修车前的2倍
    D.李师傅修车用了5分钟
    6、(4分)下列条件中,不能判定四边形ABCD为菱形的是( ).
    A.AC⊥BD,AC与BD互相平分
    B.AB=BC=CD=DA
    C.AB=BC,AD=CD,且AC⊥BD
    D.AB=CD,AD=BC,AC⊥BD
    7、(4分)下列方程中是关于x的一元二次方程的是( )
    A.x=x2﹣3B.ax2+bx+c=0
    C.D.3x2﹣2xy﹣5y2=0
    8、(4分)某家庭今年上半年1至6月份的月平均用水量5t,其中1至5月份月用水量(单位:t)统计表如图所示,根据信息该户今年上半年1至6月份用水量的中位数和众数分别是( )
    A.4,5
    B.4.5,6
    C.5,6
    D.5.5,6
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在△ABC中,AB=5,AC=7,BC=10,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,则PQ的长______.
    10、(4分)如图,菱形ABCD的对角线AC、BD相交于点O,E、F分别是AB、BC边的中点,连接EF,若EF=,BD=4,则菱形ABCD的边长为__________.
    11、(4分)如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC,BD相交于点O,点E在AB上,且BE=BO,则∠EOA=___________°.
    12、(4分)如果在平行四边形ABCD中,两个邻角的大小是5:4,那么其中较小的角等于_____.
    13、(4分)如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知满足.
    (1)求的值;
    (2)求的值.
    15、(8分)已知正比例函数和反比例函数的图象都经过点 A(3,3).
    (1)求正比例函数和反比例函数的解析式;
    (2)把直线 OA 向下平移后得到直线 l,与反比例函数的图象交于点 B(6,m),求 m 的值和直线 l 的解 析式;
    (3)在(2)中的直线 l 与 x 轴、y 轴分别交于 C、D,求四边形 OABC 的面积.
    16、(8分)如图,港口位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一个固定方向航行,甲船沿西南方向以每小时12海里的速度航行,乙船沿东南方向以每小时16海里的速度航行,它们离开港口5小时后分别位于、两处,求此时之间的距离.
    17、(10分)随着我国经济社会的发展,人民对于美好生活的追求越来越高,外出旅游已成为时尚.某社区为了了解家庭旅游消费情况,随机抽取部分家庭,对每户家庭的年旅游消费金额进行问卷调査,根据调查结果绘制成两幅不完整的统计图表.请你根据统计图表提供的信息,解答下列问题:
    (1)本次被调査的家庭有 户,表中 a= ;
    (2)本次调查数据的中位数出现在 组.扇形统计图中,E组所在扇形的圆心角是 度;
    (3)若这个社区有2700户家庭,请你估计家庭年旅游消费8000元以上的家庭有多少户?
    18、(10分)化简分式()÷ ,并在 2,3,4,5 这四个数中取一个合适的数作为 a 的值代入求值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)化简:+=___.
    20、(4分)一个弹簧不挂重物时长,挂上重物后伸长的长度与所挂重的质量成正比。如果挂上的质量后弹簧伸长,则弹簧的总长(单位:)关于所挂重物(单位:)的函数解析式是_________.
    21、(4分)设函数与的图象的交点坐标为,则的值为__________.
    22、(4分)在矩形ABCD中,AB=2,AD=3,点P是BC上的一个动点,连接AP、DP,则AP+DP的最小值为_____.
    23、(4分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:
    设某户每月用水量x(立方米),应交水费y(元).
    (1)求a,c的值;
    (2)当x≤6,x≥6时,分别写出y与x的函数关系式;
    (3)若该户11月份用水量为8立方米,求该户11月份水费是多少元?
    25、(10分)如图,在中,,将沿方向向右平移得到,若.
    (1)判断四边形的形状,并说明理由;
    (2)求四边形的面积.
    26、(12分)在矩形ABCD中,AB=8,BC=6,点E是AB边上一点,连接CE,把△BCE沿CE折叠,使点B落在点B′处.
    (1)当B′在边CD上时,如图①所示,求证:四边形BCB′E是正方形;
    (2)当B′在对角线AC上时,如图②所示,求BE的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    求出函数关系式,联立组成方程组求出方程组的解即可,也可以直接利用对称性直接得出点A的坐标.
    【详解】
    把点B(3,5)代入直线y=ax(a≠0)和反比例函数y=得:a=,k=15,
    ∴直线y=x,与反比例函数y=,
    ,解得:,
    ∴A(-3,-5)
    故选:A.
    考查一次函数和反比例函数的交点坐标的求法,常规求法是先求出各自的函数关系式,联立方程组求解即可,也可以直接根据函数图象的对称性得出答案.
    2、C
    【解析】
    根据题意判断k的取值,再根据k,b的符号正确判断直线所经过的象限.
    【详解】
    解:若y随x的增大而减小,则k<0,即-k>0,故图象经过第一,二,四象限.
    故选C.
    本题考查的是一次函数的性质,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.能够根据k,b的符号正确判断直线所经过的象限.
    3、C
    【解析】
    小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    4×10-5= 0.00004
    故答案为:C
    考查了科学计数法,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).
    4、B
    【解析】
    根据等腰梯形的定义可判断A;根据平行线的性质和三角形的内角和定理求出∠BAC=∠DCA,推出AB∥CD可以判断B;根据平行四边形的判定可判断C; 根据平行线的性质可以判断D.
    【详解】
    解:A、符合条件AD∥BC,AB=DC,可能是等腰梯形,故A选项错误;
    B、∵AD∥BC,
    ∴∠1=∠2,
    ∵∠B=∠D,
    ∴∠BAC=∠DCA,
    ∴AB∥CD,
    ∴四边形ABCD是平行四边形,故B选项正确.
    C、根据AB=AD和AD∥BC不能推出平行四边形,故C选项错误;
    D、根据∠1=∠2,推出AD∥BC,不能推出平行四边形,故D选项错误;
    故选:B
    本题主要考查对平行四边形的判定,等腰梯形的性质,三角形的内角和定理,平行线的性质和判定等知识点的理解和掌握,能综合运用性质进行推理是解此题的关键.
    5、A
    【解析】
    观察图象,明确每一段小明行驶的路程,时间,作出判断.
    【详解】
    A.李师傅上班处距他家2000米,此选项错误;
    B.李师傅路上耗时20分钟,此选项正确;
    C.修车后李师傅骑车速度是=200米/分钟,修车前速度为=100米/分钟,∴修车后李师傅骑车速度是修车前的2倍,此选项正确;
    D.李师傅修车用了5分钟,此选项正确.
    故选A.
    本题考查了学生从图象中读取信息的能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.
    6、C
    【解析】
    解:A、根据AC与BD互相平分得四边形ABCD是平行四边形,再有AC⊥BD ,可得此四边形是平行四边形;
    B、根据AB=BC=CD=DA ,可知四边形是平行四边形;
    C、由AB=BC,AD=CD,不能得到此四边形是平行四边形,所以不能判定四边形ABCD是菱形;
    D、由AB=CD,AD=BC得四边形是平行四边形,再有AC⊥BD,可得四边形是菱形.
    故选C.
    本题考查菱形的判定.
    7、A
    【解析】
    根据一元二次方程的定义即可解答.
    【详解】
    选项A,由x=x2﹣3得到:x2﹣x﹣3=0,符合一元二次方程的定义,故本选项正确;
    选项B,当a=0时,该方程不是一元二次方程,故本选项错误;
    选项C,该方程不是整式方程,故本选项错误;
    选项D,该方程属于二元二次方程,故本选项错误;
    故选A.
    本题考查了一元二次方程的定义,一元二次方程必须满足三个条件:(1)只含有一个未知数,未知数的最高次数是2;(2)二次项系数不为0;(3)方程为整式方程.
    8、D
    【解析】
    先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.
    【详解】
    解:根据题意知6月份的用水量为5×6-(3+6+4+5+6)=6(t),
    ∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,
    则该户今年1至6月份用水量的中位数为=5.5、众数为6,
    故选:D.
    本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    证明△ABQ≌△EBQ,根据全等三角形的性质得到BE=AB=5,AQ=QE,根据三角形中位线定理计算即可.
    【详解】
    解:在△ABQ和△EBQ中,

    ∴△ABQ≌△EBQ(ASA),
    ∴BE=AB=5,AQ=QE,
    同理CD=AC=7,AP=PD,
    ∴DE=CD-CE=CD-(BC-BE)=2,
    ∵AP=PD,AQ=QE,
    ∴PQ=DE=1,
    故答案为:1.
    本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    10、
    【解析】
    先根据三角形中位线定理求AC的长,再由菱形的性质求出OA,OB的长,根据勾股定理求出AB的长即可.
    【详解】
    ∵E、F分别是AB、BC边的中点,
    ∴EF是△ABC的中位线
    ∵EF=,
    ∴AC=2.
    ∵四边形ABCD是菱形,BD=4,
    ∴AC⊥BD,OA=AC=,OB=BD=2,
    ∴.
    故答案为:.
    此题考查菱形的性质、三角形中位线定理,解题关键在于熟练运用利用菱形的性质.
    11、1
    【解析】
    根据∠BAD和菱形邻角和为180°的性质可以求∠ABC的值,根据菱形对角线即角平分线的性质可以求得∠ABO的值,又由BE=BO可得∠BEO=∠BOE,根据∠BOE和菱形对角线互相垂直的性质可以求得∠EOA的大小.
    【详解】
    解:∵∠BAD=80°,菱形邻角和为180°
    ∴∠ABC=100°,
    ∵菱形对角线即角平分线
    ∴∠ABO=50°,
    ∵BE=BO
    ∴∠BEO=∠BOE==65°,
    ∵菱形对角线互相垂直
    ∴∠AOB=90°,
    ∴∠AOE=90°-65°=1°,
    故答案为 1.
    本题考查了菱形对角线互相垂直平分且平分一组对角的性质,考查了等腰三角形底角相等的性质,本题中正确的计算∠BEO=∠BOE=65°是解题的关键.
    12、80°
    【解析】
    根据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=4:5,求出∠B即可.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠B+∠C=180°,
    ∵∠B:∠C=4:5,
    ∴∠B=×180°=80°,
    故答案为:80°.
    本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键.
    13、40°
    【解析】
    首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.
    【详解】
    解:∵AB=AC,∠BAC=100°,
    ∴∠B=∠C=(180°﹣100°)÷2=40°,
    ∵DE是AB的垂直平分线,
    ∴AE=BE,
    ∴∠BAE=∠B=40°,
    故答案为40°.
    本题主要考查了等腰三角形的性质,三角形的内角和定理,线段垂直平分线的性质,掌握垂直平分线上任意一点,到线段两端点的距离相等和等边对等角是解答此题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)13
    【解析】
    先根据绝对值和平方的非负性可得a+2b=3,ab=-1,
    (1)先根据幂的性质进行化简,整体代入可解决问题;
    (2)配方后整体代入可解决问题.
    【详解】
    由题得:
    (1)
    (2)
    本题考查了绝对值和平方的非负性、完全平方公式及幂的性质,利用整体代入的思想解决问题是本题的关键.
    15、 (1)正比例函数的解析式为y=x,反比例函数的解析式为y=; (2)直线l的解析式为y=x; (3)S四边形OABC=.
    【解析】
    (1)利用待定系数法,由正比例函数和反比例函数的图象都经过点A(3,3),即可求得解析式;
    (2)由点B在反比例函数图象上,即可求得m的值;又由此一次函数是正比例函数平移得到的,可知一次函数与反比例函数的比例系数相同,代入点B的坐标即可求得解析式;
    (3)构造直角梯形AEFD,则通过求解△ABE、△BDF与直角梯形ADFE的面积即可求得△ABD的面积.
    【详解】
    (1)设正比例函数的解析式为y=ax,反比例函数的解析式为y=,
    ∵正比例函数和反比例函数的图象都经过点A(3,3),
    ∴3=3a,3=,
    ∴a=1,b=9,
    ∴正比例函数的解析式为y=x,反比例函数的解析式为y=;
    (2)∵点B在反比例函数上,
    ∴m==,
    ∴B点的坐标为(6,),
    ∵直线BD是直线OA平移后所得的直线,
    ∴可设直线BD的解析式为y=x+c,
    ∴=6+c,
    ∴c=,
    ∴直线l的解析式为y=x;
    (3)过点A作AE∥x轴,交直线l于点E,连接AC.
    ∵直线l的解析式为y=x,A(3,3),
    ∴点E的坐标为(,3),点C的坐标为(,0).
    ∴AE=−3=,OC=,
    ∴S四边形OABC=S△OAC+S△ACE−S△ABE=××3+××3−××=.
    本题考查反比例函数与一次函数的交点问题,解题的关键是掌握待定系数法求解析式和反比例函数与一次函数的交点问题.
    16、100海里
    【解析】
    根据已知条件,先求出PA、PB的长,再利用勾股定理进行解答.
    【详解】
    解:如图,由已知得,AP=12×5=60海里,PB=16×5=80海里,
    在△APB中
    ∵∠APB=90°,
    由勾股定理得AP2+PB2=AB2,
    即602+802=AB2,
    AB= =100海里.
    答:此时A、B之间的距离相距100海里.
    本题考查了勾股定理的应用,解答此题要明确方位角东南,西南是指两坐标轴夹角的平分线.
    17、(1)90,19;(2)B,24;(3)1320户
    【解析】
    (1)根据图表数据与百分率对应求得总人数,从而求得a值;
    (2)结合图表及数据可求得中位数和E所在的圆心角度数;
    (3)根据样本估计总体.
    【详解】
    (1)∵A组共有27户,对应的百分率为30%
    ∴总户数为:(户)
    ∴(户) ;
    (2) ∵共有90户,中位数为第45,46两个数据的平均数,27+19=46,
    ∴ 中位数位于B组;
    E对应的圆心角度数为:
    (3) 旅游消费8000元以上的家庭为C、D、E组,
    大约有:2700×=1320(户).
    本题考查统计的相关知识,解题关键在于梳理统计图当中的条件信息.
    18、,取代入,原式.
    【解析】
    先根据分式混合运算顺序和运算法则化简原式,再选取是分式有意义a的值代入计算可得.
    【详解】
    解:原式=·


    =a+3,
    ∵a≠﹣3,2,3,
    ∴a=4或5,
    当a=4时,原式=4+3=7;
    当a=5时,原式=5+3=8.
    本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则及分式有意义的条件.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.
    解答:解:原式==1.
    点评:本题考查了分式的加减运算.最后要注意将结果化为最简分式.
    20、
    【解析】
    弹簧总长弹簧原来的长度挂上重物质量时弹簧伸长的长度,把相关数值代入即可.
    【详解】
    解:挂上的物体后,弹簧伸长,
    挂上的物体后,弹簧伸长,
    弹簧总长.
    故答案为:.
    本题考查了由实际问题抽象一次函数关系式的知识,得到弹簧总长的等量关系是解决本题的关键.
    21、−.
    【解析】
    把交点坐标代入2个函数后,得到2个方程,求得a,b的解,整理求得的值即可.
    【详解】
    ∵函数与y=x−1的图象的交点坐标为(a,b),
    ∴b= ,b=a−1,
    ∴=a−1,
    a−a−2=0,
    (a−2)(a+1)=0,
    解得a=2或a=−1,
    ∴b=1或b=−2,
    ∴的值为−.
    故答案为:−.
    此题考查反比例函数与一次函数的交点问题,解题关键在于把交点坐标代入2个函数后,得到2个方程
    22、1
    【解析】
    作点D关于BC的对称点D',连接AD',PD',依据AP+DP=AP+PD'≥AD',即可得到AP+DP的最小值等于AD'的长,利用勾股定理求得AD'=1,即可得到AP+DP的最小值为1.
    【详解】
    解:如图,作点D关于BC的对称点D',连接AD',PD',则DD'=2DC=2AB=4,PD=PD',
    ∵AP+DP=AP+PD'≥AD',
    ∴AP+DP的最小值等于AD'的长,
    ∵Rt△ADD'中,AD'= ==1,
    ∴AP+DP的最小值为1,
    故答案为:1.
    本题考查的是最短线路问题及矩形的性质,熟知两点之间线段最短的知识是解答此题的关键.
    23、1
    【解析】
    作PE⊥OA于E,根据三角形的外角的性质得到∠ACP=30°,根据直角三角形的性质得到PE=PC=1,根据角平分线的性质解答即可.
    【详解】
    作PE⊥OA于E,
    ∵CP∥OB,
    ∴∠OPC=∠POD,
    ∵P是∠AOB平分线上一点,
    ∴∠POA=∠POD=15°,
    ∴∠ACP=∠OPC+∠POA=30°,
    ∴PE=PC=1,
    ∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,
    ∴PD=PE=1,
    故答案为:1.
    本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)1.5;6;(2)y=6x-27,(x>6);(3)21元.
    【解析】
    (1)根据表格中的数据,9月份属于第一种收费,5a=7.5;10月份属于第二种收费,6a+(9-6)c=27;即可求出a、c的值;(2)就是求分段函数解析式;(3)代入解析式求函数值.
    【详解】
    解:(1)由题意5a=7.5,解得a=1.5;
    6a+(9−6)c=27,解得c=6.
    ∴a=1.5,c=6
    (2)依照题意,
    当x≤6时,y=1.5x;
    当x≥6时,y=6×1.5+6×(x−6)=9+6(x−6)=6x−27,
    (3)将x=8代入y=6x−27(x>6)得y=6×8−27=21(元).
    答:该户11 月份水费是21元.
    主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.
    25、(1)菱形,证明见解析;(2)四边形的面积为
    【解析】
    首先利用勾股定理求得AB边的长,然后根据AE的长求得BE的长,利用平移的性质得四边相等,从而判定该四边形是菱形;
    求得高,利用底乘以高即可求得面积.
    【详解】
    解:,,,
    由勾股定理得:,


    根据平移的性质得:,

    四边形CBEF是菱形;
    ,,,,
    边上的高为,
    菱形CBEF的面积为.
    本题考查了平移的性质及勾股定理的知识,:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
    26、(1)详见解析;(2)3
    【解析】
    (1)由折叠可得BE=B'E,BC=B'C,∠BCE=∠B'CE,由∠DCB=90°=∠B可证四边形BCB′E是正方形
    (2)由折叠可得BC=B'C=6,则可求AB'=4,根据勾股定理可求B'E的长,即可得BE的长.
    【详解】
    (1)证明:∵△BCE沿CE折叠,
    ∴BE=B'E,BC=B'C
    ∠BCE=∠B'CE
    ∵四边形ABCD是矩形
    ∴∠DCB=90°=∠B
    ∴∠BCE=45°且∠B=90°
    ∴∠BEC=∠BCE=45°
    ∴BC=BE
    ∵BE=B'E,BC=B'C
    ∴BC=BE=B'C=B'E
    ∴四边形BCB'E是菱形
    又∵∠B=90°
    ∴四边形BCB'E是正方形
    (2)∵AB=8,BC=6
    ∴根据勾股定理得:AC=10
    ∵△BCE沿CE折叠
    ∴B'C=BC=6,BE=B'E
    ∴AB'=4,AE=AB﹣BE=8﹣B'E
    在Rt△AB'E中,AE2=B'A2+B'E2
    ∴(8﹣B'E)2=16+B'E2
    解得:BE'=3
    ∴BE=B'E=3
    本题考查了折叠问题,正方形的判定,矩形的性质,勾股定理,根据勾股定理列出方程是本题的关键.
    题号





    总分
    得分
    批阅人
    月份
    1
    2
    3
    4
    5
    6
    用水量/t
    3
    6
    4
    5
    6
    a
    组别
    家庭年旅游消费金额x(元)
    户数
    A
    x≤4000
    27
    B
    4000< x≤8000
    a
    C
    8000< x≤12000
    24
    D
    12000< x≤16000
    14
    E
    x>16000
    6

    相关试卷

    2024年江苏省扬州树人学校数学九上开学教学质量检测模拟试题【含答案】:

    这是一份2024年江苏省扬州树人学校数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省扬州市江都区国际学校数学九上开学质量检测模拟试题【含答案】:

    这是一份2024年江苏省扬州市江都区国际学校数学九上开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省南京师大附中树人学校数学九上开学学业质量监测试题【含答案】:

    这是一份2024年江苏省南京师大附中树人学校数学九上开学学业质量监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map