搜索
    上传资料 赚现金
    英语朗读宝

    江苏省南京玄武区六校联考2024-2025学年九年级数学第一学期开学考试试题【含答案】

    江苏省南京玄武区六校联考2024-2025学年九年级数学第一学期开学考试试题【含答案】第1页
    江苏省南京玄武区六校联考2024-2025学年九年级数学第一学期开学考试试题【含答案】第2页
    江苏省南京玄武区六校联考2024-2025学年九年级数学第一学期开学考试试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省南京玄武区六校联考2024-2025学年九年级数学第一学期开学考试试题【含答案】

    展开

    这是一份江苏省南京玄武区六校联考2024-2025学年九年级数学第一学期开学考试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)直线上两点的坐标分别是,,则这条直线所对应的一次函数的解析式为( )
    A.B.C.D.
    2、(4分)如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是( )
    A.BE=ECB.BC=EFC.AC=DFD.△ABC≌△DEF
    3、(4分)为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:
    则关于这些同学的每天锻炼时间,下列说法错误的是( )
    A.众数是60B.平均数是21C.抽查了10个同学D.中位数是50
    4、(4分)下列图形中是中心对称图形,但不是轴对称图形的是( )
    A.B.C.D.
    5、(4分)一元二次方程的根的情况是( )
    A.有两个不相等的实数根B.有两个相等的实数根
    C.没有实数根D.不能确定
    6、(4分)下列命题中不正确的是( )
    A.平行四边形是中心对称图形
    B.斜边及一锐角分别相等的两直角三角形全等
    C.两个锐角分别相等的两直角三角形全等
    D.一直角边及斜边分别相等的两直角三角形全等
    7、(4分)如图,在中,点D、E、F分别在边、、上,且,.下列四种说法: ①四边形是平行四边形;②如果,那么四边形是矩形;③如果平分,那么四边形是菱形;④如果且,那么四边形是菱形. 其中,正确的有( ) 个
    A.1B.2C.3D.4
    8、(4分)若分式的值为0,则x的值是( )
    A.2B.-2C.2或-2D.0
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)直线y=kx+b经过点A(-2,0)和y轴的正半轴上一点B.如果△ABO(O为坐标原点)的面积为2,则b的值是________.
    10、(4分)在数学课上,老师提出如下问题:
    如图1,将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.
    小明的折叠方法如下:
    如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D;(2)C点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.
    老师说:“小明的作法正确.”
    请回答:小明这样折叠的依据是______________________________________.
    11、(4分)如图,在中,,,,若点P是边AB上的一个动点,以每秒3个单位的速度按照从运动,同时点Q从以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。在运动过程中,设运动时间为t,若为直角三角形,则t的值为________.
    12、(4分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_____.
    13、(4分)如图,将平行四边形ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,有以下四个结论①MN∥BC;②MN=AM;③四边形MNCB是矩形;④四边形MADN是菱形,以上结论中,你认为正确的有_____________(填序号).
    三、解答题(本大题共5个小题,共48分)
    14、(12分)小明、小亮都是射箭爱好者,他们在相同的条件下各射箭5次,每次射箭的成绩情况如表:
    (1)请你根据表中的数据填写下表:
    (2)从平均数和方差相结合看,谁的成绩好些?
    15、(8分)某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.
    (1)求y与x之间的函数表达式,并写出x的取值范围;
    (2)若该节能产品的日销售利润为W(元),求W与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?
    (3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元?
    16、(8分)如图,AC为矩形ABCD的对角线,DE⊥AC于E,BF⊥AC于F。
    求证:DE=BF
    17、(10分)如图,在长方形ABCD中,AB=6,BC=8,点O在对角线AC上,且OA=OB=OC,点P是边CD上的一个动点,连接OP,过点O作OQ⊥OP,交BC于点Q.
    (1)求OB的长度;
    (2)设DP= x,CQ= y,求y与x的函数表达式(不要求写自变量的取值范围);
    (3)若OCQ是等腰三角形,求CQ的长度.
    18、(10分)如图,▱ABCD中,AC为对角线,G为CD的中点,连接AG并廷长交BC的延长线于点F,连接DF,求证:四边形ACFD为平行四边形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛.在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:
    请你根据表中数据选一人参加比赛,最合适的人选是________.
    20、(4分)一次函数的图象经过第二、三、四象限,则的取值范围是__________.
    21、(4分)已知一组数据3,5,9,10,x,12的众数是9,则这组数据的平均数是___________.
    22、(4分)一组数据2,6,,10,8的平均数是6,则这组数据的方差是______.
    23、(4分)如图,、、、分别是四边形各边的中点,若对角线、的长都是,则四边形的周长是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某公司招聘职员两名,对甲乙丙丁四名候选人进行笔试和面试,各项成绩均为100分,然后再按笔试70%、面试30%计算候选人综合成绩(满分100分)各项成绩如下表所示:
    (1)直接写出四名候选人面试成绩中位数;
    (2)现得知候选人丙的综合成绩为87.2分,求表中x的值;
    (3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要聘请的前两名的人选.
    25、(10分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.
    根据图表信息,解答下列问题:
    (1)本次调查的总人数为______,表中m的值为_______;
    (2)请补全条形统计图;
    (3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.
    26、(12分)某厂制作甲、乙两种环保包装盒.已知同样用6m的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料.
    (1)求制作每个甲盒、乙盒各用多少材料?
    (2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度与甲盒数量之间的函数关系式,并求出最少需要多少米材料.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    利用待定系数法求函数解析式.
    【详解】
    解:∵直线y=kx+b经过点P(-20,5),Q(10,20),
    ∴ ,
    解得,
    所以,直线解析式为.
    故选:A.
    本题主要考查待定系数法求函数解析式,是中考的热点之一,需要熟练掌握.解题的关键是掌握待定系数法.
    2、A
    【解析】
    平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.所以Rt△ABC与Rt△DEF的形状和大小完全相同,即Rt△ABC≌Rt△DEF,再根据性质得到相应结论.
    【详解】
    解:∵Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF
    ∴Rt△ABC≌Rt△DEF
    ∴BC=EF,AC=DF
    所以只有选项A是错误的,故选A.
    本题涉及的是全等三角形的知识,解答本题的关键是应用平移的基本性质.
    3、B
    【解析】
    根据众数、中位数和平均数的定义分别对每一项进行分析即可.
    【详解】
    解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;
    B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;
    C、调查的户数是2+3+4+1=10,故C选项说法正确;
    D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;
    故选:B.
    此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.
    4、D
    【解析】
    将一个图形沿着一条直线翻折后两侧能够完全重合,这样的图形是轴对称图形;将一个图形绕着一个点旋转180°后能与自身完全重合,这样的图形是中心对称图形,根据定义依次判断即可得到答案.
    【详解】
    A、是轴对称图形,是中心对称图形;
    B、是轴对称图形,是中心对称图形;
    C、是轴对称图形,不是中心对称图形;
    D、不是轴对称图形,是中心对称图形,
    故选:D.
    此题考查轴对称图形的定义,中心对称图形的定义,熟记定义并掌握图形的特点是解题的关键.
    5、B
    【解析】
    根据根的判别式判断即可.
    【详解】
    ∵,
    ∴该方程有两个相等的实数根,
    故选:B.
    此题考查一元二次方程的根的判别式,熟记根的三种情况是解题的关键.
    6、C
    【解析】
    解:A.平行四边形是中心对称图形,说法正确;
    B.斜边及一锐角分别相等的两直角三角形全等,说法正确;
    C.两个锐角分别相等的两直角三角形全等,说法错误;
    D.一直角边及斜边分别相等的两直角三角形全等,说法正确.
    故选C.
    7、D
    【解析】
    先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,④正确,进而得到正确说法的个数.
    【详解】
    解:∵DE∥CA,DF∥BA,
    ∴四边形AEDF是平行四边形,选项①正确;
    若∠BAC=90°,
    ∴平行四边形AEDF为矩形,选项②正确;
    若AD平分∠BAC,
    ∴∠EAD=∠FAD,
    又DE∥CA,∴∠EDA=∠FAD,
    ∴∠EAD=∠EDA,
    ∴AE=DE,
    ∴平行四边形AEDF为菱形,选项③正确;
    若AB=AC,AD⊥BC,
    ∴AD平分∠BAC,
    同理可得平行四边形AEDF为菱形,选项④正确,
    则其中正确的个数有4个.
    故选D.
    此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.
    8、A
    【解析】
    分式的值为0,分子为0,也就是x-2=0,即x=2,分母不能为0,x+2≠0,即x≠-2,所以选A.
    【详解】
    根据题意x-2=0且x+2≠0,所以x=2,选A.
    本题考查分式的性质,分式的值为0,分子为0且分母不能为0,据此作答.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】.而|OA|=1,故|OB|=1,又点B在y轴正半轴上,所以b=1.
    10、对角线互相垂直平分的四边形是菱形
    【解析】
    解:如图,连接DF、DE.
    根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.
    则四边形DECF恰为菱形.
    所以小明这样折叠的依据是: 对角线互相垂直平分的四边形是菱形.
    11、或或
    【解析】
    由已知得出∠B=60°,AB=2BC=18,①当∠BQP=90°时,则∠BPQ=30°,BP=2BQ,得出18-3t=2t,解得t=;②当∠QPB=90°时,则∠BQP=30°,BQ=2BP,若0<t<6时,则t=2(18-3t),解得t=,若6<t≤9时,则t=2(3t-18),解得t=.
    【详解】
    解:∵∠C=90°,∠A=30°,BC=9,
    ∴∠B=60°,AB=2BC=18,
    ①当∠BQP=90°时,如图1所示:则AC∥PQ,
    ∴∠BPQ=30°,BP=2BQ,
    ∵BP=18-3t,BQ=t,
    ∴18-3t=2t,
    解得:t=;
    ②当∠QPB=90°时,如图2所示:
    ∵∠B=60°,
    ∴∠BQP=30°,
    ∴BQ=2BP,
    若0<t<6时,
    则t=2(18-3t),
    解得:t=,
    若6<t≤9时,
    则t=2(3t-18),
    解得:t=;
    故答案为:或或.
    本题考查了含30°角直角三角形的判定与性质、平行线的判定与性质等知识,熟练掌握含30°角直角三角形的性质是解题的关键.
    12、1.2
    【解析】
    根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.
    【详解】
    ∵在△ABC中,AB=3,AC=4,BC=5,
    ∴AB2+AC2=BC2,
    即∠BAC=90°.
    又PE⊥AB于E,PF⊥AC于F,
    ∴四边形AEPF是矩形,
    ∴EF=AP.
    ∵M是EF的中点,
    ∴AM=EF=AP.
    因为AP的最小值即为直角三角形ABC斜边上的高,即2.4,
    ∴AM的最小值是1.2.
    本题考查了勾股定理, 矩形的性质,熟练的运用勾股定理和矩形的性质是解题的关键.
    13、①②④
    【解析】
    根据四边形ABCD是平行四边形,可得∠B=∠D,再根据折叠可得∠D=∠NMA,再利用等量代换可得∠B=∠NMA,然后根据平行线的判定方法可得MN∥BC;证明四边形AMND是平行四边形,再根据折叠可得AM=DA,进而可证出四边形AMND为菱形,再根据菱形的性质可得MN=AM,不能得出∠B=90°;即可得出结论.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴∠B=∠D,
    ∵根据折叠可得∠D=∠NMA,
    ∴∠B=∠NMA,
    ∴MN∥BC;①正确;
    ∵四边形ABCD是平行四边形,
    ∴DN∥AM,AD∥BC,
    ∵MN∥BC,
    ∴AD∥MN,
    ∴四边形AMND是平行四边形,
    根据折叠可得AM=DA,
    ∴四边形AMND为菱形,
    ∴MN=AM;②④正确;
    没有条件证出∠B=90°,④错误;
    故答案为①②④.
    本题主要考查了翻折变换的性质、平行四边形的判定与性质、菱形的判定与性质、矩形的判定等知识,熟练掌握翻折变换的性质、平行四边形和菱形以及矩形的判定是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)填表见解析;(2)见解析.
    【解析】
    分析:(1)根据平均数、众数和方差的定义进行填表即可;
    (2)根据两人的成绩的平均数相同,再根据方差得出乙的成绩比甲稳定,即可求出答案.
    详解:(1)填表如下:

    (2)小明和小亮射箭的平均数都是7,但小明比小亮的方差要小,说明小明的成绩较为稳定,所以小明的成绩比小亮的成绩要好些.
    点睛:本题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
    15、(1) ;(2)日销售利润不超过1040元的天数共有18天;(3)第5天的日销售利润最大,最大日销售利润是880元.
    【解析】
    (1)这是一个分段函数,利用待定系数法求y与x之间的函数表达式,并确定x的取值范围;
    (2)根据利润=(售价-成本)×日销售量可得w与x之间的函数表达式,并分别根据分段函数计算日销售利润不超过1040元对应的x的值;
    (3)分别根据5≤x≤10和10>,
    ∴最合适的人选是丙.
    故答案为:丙.
    点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    20、m<3
    【解析】
    根据一次函数y=(m-3)x-2的图象经过二、三、四象限判断出m的取值范围即可.
    【详解】
    ∵一次函数y=(m-3)x-2的图象经过二、三、四象限,
    ∴m-3<0,
    ∴m<3,
    故答案为:m<3.
    此题考查一次函数的图象与系数的关系,解题关键在于掌握一次函数y=kx+b(k≠0)中,当k<0,b<0时函数的图象在二、三、四象限.
    21、1.
    【解析】
    试题分析::∵数据3,5,9,10,x,12的众数是9,∴x=9,
    ∴这组数据的平均数是(3+5+9+10+9+12)÷6=1.
    故答案是1.
    考点:1.算术平均数2.众数.
    22、8.
    【解析】
    根据这组数据的平均数是6,写出平均数的表示式,得到关于x的方程,求出其中x的值,再利用方差的公式,写出方差的表示式,得到结果.
    【详解】
    ∵数据2,6,,10,8的平均数是6,

    ∴x=4,
    ∴这组数据的方差是.
    考点: 1.方差;2.平均数.
    23、
    【解析】
    利用三角形中位线定理易得所求四边形的各边长都等于AC,或BD的一半,进而求四边形周长即可.
    【详解】
    ∵E,F,G,H,是四边形ABCD各边中点
    ∴HG=AC,EF=AC,GF=HE=BD
    ∴四边形EFGH的周长是HG+EF+GF+HE=(AC+AC+BD+BD)=×(20+20+20+20)=40(cm).
    故答案为40cm.
    本题考查了三角形的中位线定理,解决本题的关键是找到四边形的四条边与已知的两条对角线的关系.三角形中位线的性质为我们证明两直线平行,两条线段之间的数量关系又提供了一个重要的依据.
    二、解答题(本大题共3个小题,共30分)
    24、(1)89分;(2)86;(3)甲的综合成绩: 89.4分,乙的综合成绩: 86.4分,丁的综合成绩为87.4分,以综合成绩排序确定所要招聘的前两名的人选是:甲、丁.
    【解析】
    (1)根据中位数的意义,将四个数据排序后,处在第2、3位的两个数的平均数即为中位数,
    (2)根据加权平均数的计算方法,列方程求解即可,
    (3)依据加权平均数的计算方法,分别计算甲、乙、丁的综合成绩,最后比较产生前两名的候选人.
    【详解】
    解:(1)面试成绩排序得:86,88,90,92,处在第2、3位两个数的平均数为(88+90)÷2=89,因此中位数是89,
    答:四名候选人的面试成绩的中位数是89分;
    (2)由题意得:70%x+90×30%=87.2,
    解得:x=86,
    答:表格中x的值为86;
    (3)甲的综合成绩:90×70%+88×30%=89.4分,乙的综合成绩:84×70%+92×30%=86.4分,
    丁的综合成绩为:88×70%+86×30%=87.4分,
    处在综合成绩前两位的是:甲、丁.
    ∴以综合成绩排序确定所要招聘的前两名的人选是:甲、丁.
    本题考查中位数、加权平均数的计算方法,掌握中位数的概念、加权平均数的计算公式是解题的关键.
    25、 (1)120;45%;(2)补图见解析;(3)平均每天得到约1980人的肯定.
    【解析】
    (1)非常满意的人数÷所占百分比计算即可得;用满意的人数÷总人数即可得m
    (2)计算出比较满意的n的值,然后补全条形图即可
    (3)每天接待的游客×(非常满意+满意)的百分比即可
    【详解】
    (1)12÷10%=120;54÷120×100%=45%
    (2)比较满意:120×40%=48(人);补全条形统计图如图.
    (3)3600×(45%+10%)=1980(人).
    答:该景区服务工作平均每天得到约1980人的肯定.
    统计图有关的计算是本题的考点,熟练掌握其特点并正确计算是解题的关键.
    26、甲盒用1.6米材料;制作每个乙盒用1.5米材料;l=1.1n+1511,1711.
    【解析】
    首先设制作每个乙盒用米材料,则制作甲盒用(1+21%)米材料,根据乙的数量-甲的数量=2列出分式方程进行求解;根据题意得出n的取值范围,然后根据l与n的关系列出函数解析式,根据一次函数的增减性求出最小值.
    【详解】
    解:(1)设制作每个乙盒用米材料,则制作甲盒用(1+21%)米材料
    由题可得: 解得x=1.5(米)
    经检验x=1.5是原方程的解,所以制作甲盒用1.6米
    答:制作每个甲盒用1.6米材料;制作每个乙盒用1.5米材料
    (2)由题

    ∵,∴l随n增大而增大,
    ∴当时,
    考点:分式方程的应用,一次函数的性质.
    题号





    总分
    得分
    批阅人
    每天锻炼时间(分钟)
    20
    40
    60
    90
    学生数
    2
    3
    4
    1
    射箭次数
    第1次
    第2次
    第3次
    第4次
    第5次
    小明成绩(环)
    6
    7
    7
    7
    8
    小亮成绩(环)
    4
    8
    8
    6
    9
    姓名
    平均数(环)
    众数(环)
    方差
    小明
    7
    0.4
    小亮
    8




    平均数/环
    9.5
    9.5
    9.5
    9.5
    方差/环2
    5.1
    4.7
    4.5
    5.1
    候选人
    笔试成绩
    面试成绩

    90
    88

    84
    92

    x
    90

    88
    86
    满意度
    人数
    所占百分比
    非常满意
    12
    10%
    满意
    54
    m
    比较满意
    n
    40%
    不满意
    6
    5%

    相关试卷

    江苏省南京玄武区2025届数学九上开学联考模拟试题【含答案】:

    这是一份江苏省南京玄武区2025届数学九上开学联考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省南京玄武区2024年九年级数学第一学期开学联考模拟试题【含答案】:

    这是一份江苏省南京玄武区2024年九年级数学第一学期开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省南京市六校联考2025届数学九年级第一学期开学检测模拟试题【含答案】:

    这是一份江苏省南京市六校联考2025届数学九年级第一学期开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map