江苏省南京玄武区2024年九年级数学第一学期开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在实际生活中,我们经常利用一些几何图形的稳定性或不稳定性,下列实物图中利用了稳定性的是( )
A.电动伸缩门 B.升降台
C.栅栏 D.窗户
2、(4分)下列命题是真命题的是( )
A.如果a2=b2,那么a=b
B.如果两个角是同位角,那么这两个角相等
C.相等的两个角是对项角
D.在同一平面内,垂直于同一条直线的两条直线平行
3、(4分)如图,正方形ABCD的边长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△PAE周长的最小值是( )
A.3B.4C.5D.6
4、(4分)将某个图形的各个顶点的横坐标都减去2,纵坐标保持不变,可将该图形( )
A.向左平移2个单位B.向右平移2个单位
C.向上平移2个单位D.向下平移2个单位
5、(4分)直角坐标系中,A、B两点的横坐标相同但均不为零,则直线AB( )
A.平行于x轴B.平行于y轴C.经过原点D.以上都不对
6、(4分)如图,直线y=ax+b(a≠0)过点A(0,4),B(-3,0),则方程ax+b=0的解是( )
A.x=-3B.x=4C.x=D.x=
7、(4分)如图,以直角三角形的三边为边,分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形有( )
A.1个B.2个C.3个D.4个
8、(4分)已知:中,,求证:,下面写出可运用反证法证明这个命题的四个步骤:
①∴,这与三角形内角和为矛盾,②因此假设不成立.∴,③假设在中,,④由,得,即.这四个步骤正确的顺序应是( )
A.③④②①B.③④①②C.①②③④D.④③①②
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)当___________________时,关于的分式方程无解
10、(4分) “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为_____.
11、(4分)菱形的周长是20,一条对角线的长为6,则它的面积为_____.
12、(4分)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.
13、(4分)平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)在等腰三角形ABD 中, ABAD.
(I)试利用无刻度的直尺和圆规作图,求作:点C ,使得四边形 ABCD 是菱形.(保留作图痕迹,不写作法和证明);
(II)在菱形 ABCD 中,连结 AC 交 BD 于点O,若 AC8,BD6,求AB边上的高h的长.
15、(8分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.
(1)A城和B城各有多少吨肥料?
(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.
(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?
16、(8分)已知直线l为x+y=8,点P(x,y)在l上且x>0,y>0,点A的坐标为(6,0).
(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;
(2)当S=9时,求点P的坐标;
(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.
17、(10分)已知x=﹣1,y=+1,求x2+xy+y2的值.
18、(10分)某学校组织330学生集体外出活动,计划租用甲、乙两种大客车共8辆,已知甲种客车载客量为45人/辆,租金为400元/辆;乙种客车载客量为30人/辆,租金为280元/辆, 设租用甲种客车x辆.
(1)用含x的式子填写下表:
(2)给出最节省费用的租车方案,并求出最低费用.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)将一个矩形纸片沿折叠成如图所示的图形,若,则的度数为________.
20、(4分)菱形的面积是16,一条对角线长为4,则另一条对角线的长为______.
21、(4分)平行四边形ABCD的对角线AC、BD相交于点O,AB=6,BC=8,若△AOB是等腰三角形,则平行四边形ABCD的面积等于_______________________.
22、(4分)如图,将矩形纸片ABCD分别沿AE、CF折叠,若B、D两点恰好都落在对角线的交点O上,下列说法:①四边形AECF为菱形,②∠AEC=120°,③若AB=2,则四边形AECF的面积为,④AB:BC=1:2,其中正确的说法有_____.(只填写序号)
23、(4分)分解因式=____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组:,并把它的解集在数轴上表示出来.
25、(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销量y(件)之间的关系如下表:若日销量y是销售价x的一次函数.
(1)求出日销量y(件)与销售价x(元)的函数关系式;
(2)求销售定价为30元时,每日的销售利润.
26、(12分)在中,,,点是的中点,,垂足为,连接.
(1)如图1,与的数量关系是__________.
(2)如图2,若是线段上一动点(点不与点、重合),连接,将线段绕点逆时针旋转得到线段,连接,请猜想三者之间的数量关系,并证明你的结论;
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据三角形具有稳定性和四边形具有不稳定性进行辨别即可.
【详解】
A. 由平行四边形的特性可知,平行四边形具有不稳定性,所以容易变形,伸缩门运用了平行四边形易变形的特性;
B. 升降台也是运用了四边形易变形的特性;
C.栅栏是由一些三角形焊接而成的,它具有稳定性;
D.窗户是由四边形构成,它具有不稳定性.
故选C.
此题主要考查了平行四边形的特性是容易变形以及三角形具有稳定性.
2、D
【解析】
利用平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系分别判断后即可确定正确的选项.
【详解】
A、如果a2=b2,那么a=±b,故错误,是假命题;
B、两直线平行,同位角才相等,故错误,是假命题;
C、相等的两个角不一定是对项角,故错误,是假命题;
D、平面内,垂直于同一条直线的两条直线平行,正确,是真命题,
故选D.
本题考查了命题与定理的知识,解题的关键是了解平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系等知识,难度不大.
3、D
【解析】
连接AC、CE,CE交BD于P,此时AP+PE的值最小,求出CE长,即可求出答案.
【详解】
解:连接AC、CE,CE交BD于P,连接AP、PE,
∵四边形ABCD是正方形,
∴OA=OC,AC⊥BD,即A和C关于BD对称,
∴AP=CP,
即AP+PE=CE,此时AP+PE的值最小,
所以此时△PAE周长的值最小,
∵正方形ABCD的边长为4,点E在边AB上,AE=1,
∴∠ABC=90°,BE=4﹣1=3,
由勾股定理得:CE=5,
∴△PAE的周长的最小值是AP+PE+AE=CE+AE=5+1=6,
故选D.
本题考查了正方形的性质与轴对称——最短路径问题,知识点比较综合,属于较难题型.
4、A
【解析】
纵坐标不变则图形不会上下移动,横坐标减2,则说明图形向左移动2个单位.
【详解】
由于图形各顶点的横坐标都减去2,
故图形只向左移动2个单位,
故选A.
本题考查了坐标与图形的变化---平移,要知道,上下移动,横坐标不变,左右移动,纵坐标不变.
5、B
【解析】
平行于y轴的直线上的点的横坐标相同.由此即可解答.
【详解】
直角坐标系下两个点的横坐标相同且不为零,则说明这两点到y轴的距离相等,且在y轴的同一侧,所以过这两点的直线平行于y轴.
故选B.
本题考查坐标与图形的性质,关键是根据:两点的横坐标相同,到y轴的距离相等,过这两点的直线平行于y轴解答.
6、A
【解析】
根据所求方程的解,即为函数y=ax+b图象与x轴交点横坐标,确定出解即可.
【详解】
方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,
∵直线y=ax+b过B(-3,0),
∴方程ax+b=0的解是x=-3,
故选A.
本题考查了一次函数与一元一次方程,任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
7、D
【解析】
试题分析:(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.
(2)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.
(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.
(4)S1=,S2=,S1=,∵,∴S1+S2=S1.
综上,可得:面积关系满足S1+S2=S1图形有4个.
故选D.
考点:勾股定理.
8、B
【解析】
根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.
【详解】
题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:
应该为:(1)假设∠B≥90°,
(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,
(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,
(4)因此假设不成立.∴∠B<90°,
原题正确顺序为:③④①②,
故选B.
本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、m=1、m=-4或m=6.
【解析】
方程两边都乘以(x+2)(x-2)把分式方程化为整式方程,当分式方程有增根或分式方程化成的整式方程无解时原分式方程无解,根据这两种情形即可计算出m的值.
【详解】
解:方程两边都乘以(x+2)(x-2)去分母得,
2(x+2)+mx=3(x-2),
整理得(1-m)x=10,
∴当m=1时,此整式方程无解,所以原分式方程也无解.
又当原分式方程有增根时,分式方程也无解,
∴当x=2或-2时原分式方程无解,
∴2(1-m)=10或-2(1-m)=10,
解得:m=-4或m=6,
∴当m=1、m=-4或m=6时,关于x的方程无解.
本题考查了分式方程的无解条件.分式方程无解有两种情形:一是分式方程有增根;二是分式方程化成的整式方程无解.
10、3
【解析】
由题意可知:中间小正方形的边长为:a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.
【详解】
由题意可知:中间小正方形的边长为:a-b,
∵每一个直角三角形的面积为:ab=×8=4,
∴4×ab+(a-b)2=25,
∴(a−b)2=25-16=9,
∴a-b=3,
故答案为3.
本题考查了勾股定理的证明,熟练掌握该知识点是本题解题的关键.
11、1.
【解析】
先画出图形,根据菱形的性质可得,DO=3,根据勾股定理可求得AO的长,从而得到AC的长,再根据菱形的面积公式即可求得结果.
【详解】
由题意得,
∵菱形ABCD
∴,AC⊥BD
∴
∴
∴
考点:本题考查的是菱形的性质
解答本题的关键是熟练掌握菱形的对角线互相垂直且平分,菱形的四条边相等;同时熟记菱形的面积等于对角线乘积的一半.
12、1
【解析】
【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.
【详解】∵关于x的一元二次方程mx1+5x+m1﹣1m=0有一个根为0,
∴m1﹣1m=0且m≠0,
解得,m=1,
故答案是:1.
【点睛】本题考查了一元二次方程ax1+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.
13、14cm或16cm
【解析】
试题分析:根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,然后分别讨论BE=2cm,CE=3cm或BE=3cm,CE=2cm,继而求得答案.
解:如图,∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵AE为角平分线,
∴∠DAE=∠BAE,
∴∠AEB=∠BAE,
∴AB=BE,
∴①当AB=BE=2cm,CE=3cm时,
则周长为14cm;
②当AB=BE=3cm时,CE=2cm,
则周长为16cm.
故答案为14cm或16cm.
考点:平行四边形的性质.
三、解答题(本大题共5个小题,共48分)
14、 (I)见解析;(II)
【解析】
(I)根据菱形的尺规作图的方法作图即可.
(II)先由勾股定理可得出AB的长度,然后根据菱形的面积:即可求出h的长度.
【详解】
(I)如图,点是所求作的点,
∴四边形是菱形.
(II) 如图:连接AC,交BD于点O.
∵四边形是菱形,
∴,,
,
在中,由勾股定理得:,
∵,
∴,解得:.
本题考查了菱形的尺规作图和菱形的性质,难点在于根据等面积法求出h的值.
15、(1)A城和B城分别有200吨和300吨肥料;(2)从A城运往D乡200吨,从B城运往C乡肥料240吨,运往D乡60吨时,运费最少,最少运费是10040元;(3)当0<a<4时, A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当a=4时,在0≤x≤200范围内的哪种调运方案费用都一样;当4<a<6时, A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.
【解析】
【分析】(1)根据A、B两城共有肥料500吨,其中A城肥料比B城少100吨,列方程或方程组得答案;
(2)设从A城运往C乡肥料x吨,用含x的代数式分别表示出从A运往运往D乡的肥料吨数,从B城运往C乡肥料吨数,及从B城运往D乡肥料吨数,根据:运费=运输吨数×运输费用,得一次函数解析式,利用一次函数的性质得结论;
(3)列出当A城运往C乡的运费每吨减少a(0<a<6)元时的一次函数解析式,利用一次函数的性质讨论,得结论.
【详解】(1)设A城有化肥a吨,B城有化肥b吨,
根据题意,得,
解得,
答:A城和B城分别有200吨和300吨肥料;
(2)设从A城运往C乡肥料x吨,则运往D乡(200﹣x)吨,
从B城运往C乡肥料(240﹣x)吨,则运往D乡(60+x)吨,
设总运费为y元,根据题意,
则:y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040,
∵,∴0≤x≤200,
由于函数是一次函数,k=4>0,
所以当x=0时,运费最少,最少运费是10040元;
(3)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,
所以y=(20﹣a)x+25(200﹣x)+15(240﹣x)+24(60+x)=(4﹣a)x+10040,
当4﹣a>0时,即0<a<4时,y随着x的增大而增大,∴当x=0时,运费最少,A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;
当4-a=0时,即a=4时,y=10040,在0≤x≤200范围内的哪种调运方案费用都一样;
当4﹣a<0时,即4<a<6时,y随着x的增大而减小,∴当x=240时,运费最少,此时A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.
【点睛】本题考查了二元一次方程组的应用、不等式组的应用、一次函数的应用等,弄清题意、根据题意找准等量关系、不等关系列出方程组,列出一次函数解析式是关键.注意(3)小题需分类讨论.
16、(1)、y=24﹣3x(0<x<8);(2)、P(5,3);(3)、(6.4,1.6).
【解析】
试题分析:(1)根据三角形的面积公式即可直接求解;
(2)把S=9代入,解方程即可求解;
(3)点O关于l的对称点B,AB与直线x+y=8的交点就是所求.
试题解析:(1)如图所示:
∵点P(x,y)在直线x+y=8上,
∴y=8﹣x,
∵点A的坐标为(6,0),
∴S=3(8﹣x)=24﹣3x,(0<x<8);
(2)当24﹣3x=9时,x=5,即P的坐标为(5,3).
(3)点O关于l的对称点B的坐标为(8,8),设直线AB的解析式为y=kx+b,
由8k+b=8,6k+b=0,解得k=4,b=﹣24,
故直线AB的解析式为y=4x﹣24,
由y=4x﹣24,x+y=8解得,x=6.4,y=1.6,
点M的坐标为(6.4,1.6).
考点: 轴对称-最短路线问题;一次函数图象上点的坐标特征.
17、1
【解析】
根据x、y的值,可以求得题目中所求式子的值.
【详解】
解:∵x=﹣1,y=+1,
∴x+y=2,xy=2,
∴x2+xy+y2=(x+y)2﹣xy=(2)2﹣2=12﹣2=1.
本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.
18、 (1)(1)8﹣x,30(8﹣x),280(8﹣x);(2)最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元
【解析】
(1)设租用甲种客车x辆,根据题意填表格即可.
(2)设租车的总费用为y元,则可列出关于x的解析式即为y=120x + 2240,又因为学校组织330学生集体外出活动,则有不等式45x+30(8﹣x)≥330,求得x的取值范围,即可解答最节省费用的租车方案.
【详解】
解:(1)
(2)当租用甲种客车x辆时,设租车的总费用为y元,
则:y = 400x +280(8﹣x)=120x + 2240,
又∵45x+30(8﹣x)≥330,解得x≥6,
在函数y=120x+2240中,
∵120>0,
∴y随x的增大而增大,
∴当x = 6时,y取得最小值,最小值为2960.
答:最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元.
此题考查一元一次不等式的应用,一次函数的应用,解题关键在于利用不等式求取的范围解答即可.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、126°
【解析】
直接利用翻折变换的性质以及平行线的性质分析得出答案.
【详解】
解:如图,由题意可得:
∠ABC=∠BCE=∠BCA=27°,
则∠ACD=180°-27°-27°=126°.
故答案为:126°.
本题主要考查了翻折变换的性质以及平行线的性质,正确应用相关性质是解题关键.
20、8
【解析】
【分析】根据菱形的面积等于对角线乘积的一半进行计算即可求得.
【详解】设另一条对角线的长为x,则有
=16,
解得:x=8,
故答案为8.
【点睛】本题考查了菱形的面积,熟知菱形的面积等于菱形对角线乘积的一半是解题的关键.
21、1或2
【解析】
分三种情形分别讨论求解即可解决问题;
【详解】
情形1:如图当OA=OB时,∵四边形ABCD是平行四边形,
∴AC=2OA,BD=2OB,
∴AC=BD,
∴四边形ABCD是矩形,
∴四边形ABCD的面积=1.
情形2:当AB=AO=OC=6时,作AH⊥BC于H.设HC=x.
∵AH2=AB2-BH2=AC2-CH2,
∴62-(x-8)2=122-x2,
∴x=,
∴AH=,
∴四边形ABCD的面积=8×=2.
情形3:当AB=OB时,四边形ABCD的面积与情形2相同.
综上所述,四边形ABCD的面积为1或2.
故答案为1或2.
本题考查平行四边形的性质、等腰三角形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.
22、①②③
【解析】
根据折叠性质可得OC=CD=AB=OA,∠COF=∠EOA=∠B=∠D=90°,∠OCF=∠DCF,∠BAE=∠OAE,即可得出∠ACB=30°,进而可得∠OCF=∠DCF=∠BAE=∠OAE=30°,可证明
AE//CF,AE=CE,根据矩形性质可得CE//AF,即可得四边形AECF是平行四边形,进而可得四边形AECF为菱形,由∠BAE=30°,可得∠AEB=60°,即可得∠AEC=120°,根据含30°角的直角三角形的性质可求出BE的长,即可得OE的长,根据菱形的面积公式即可求出四边形AECF的面积,根据含30°角的直角三角形的性质即可求出AB:BC的值,综上即可得答案.
【详解】
∵矩形ABCD分别沿AE、CF折叠,B、D两点恰好都落在对角线的交点O上,
∴OC=CD=AB=OA,∠COF=∠EOA=∠B=∠D=90°,∠OCF=∠DCF,∠BAE=∠OAE,
∴∠ACB=∠CAD=30°,∠BAC=∠ACD=60°,
∵∠OCF=∠DCF,∠BAE=∠OAE,
∴∠OCF=∠DCF=∠BAE=∠OAE=30°,
∴AE//CF,AE=CE,
∴四边形AECF是平行四边形,
∵AE=CE,
∴四边形AECF是菱形,故①正确,
∵∠BAE=30°,∠B=90°,
∴∠AEB=60°,
∴∠AEC=120°,故②正确,
设BE=x,
∵∠BAE=30°,
∴AE=2x,
∴x2+22=(2x)2,
解得:x=,
∴OE=BE=,
∴S菱形AECF=EFAC=××4=,故③正确,
∵∠ACB=30°,
∴AC=2AB,
∴BC==AB,
∴AB:BC=1:,故④错误,
综上所述:正确的结论有①②③,
故答案为:①②③
本题考查矩形的性质、菱形的判定与性质及含30°角的直角三角形的性质,熟练掌握相关性质及判定方法是解题关键.
23、.
【解析】
多项式有两项,两项都含有相同的因式x,所以提取提取公因式x即可.
【详解】
= x(2x-1).
故答案为x(2x-1).
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
二、解答题(本大题共3个小题,共30分)
24、,解集在数轴上表示如图见解析.
【解析】
先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.
【详解】
解:由①得:
由②得:
不等式组解集为
解集在数轴上表示如图:
本题考查了解一元一次不等式组的应用,解此题的关键是能求出不等式组的解集,难度适中.
25、 (1) y=﹣x+1;(2)200元
【解析】
(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.
(2)把x=30代入函数式求y,根据:(售价-进价)×销售量=利润,求解.
【详解】
解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).
则
解得
即一次函数解析式为y=﹣x+1.
(2)当x=30时,每日的销售量为y=﹣30+1=10(件)
每日所获销售利润为(30﹣10)×10=200(元)
本题主要考查用待定系数法求一次函数关系式,解题的关键是理解题意,学会构建一次函数解决实际问题.
26、(1)DE=BC;(2)
【解析】
(1)由∠ACB=90°,∠A=30°得到∠B=60°,根据直角三角形斜边上中线性质得到DB=DC,则可判断△DCB为等边三角形,由于DE⊥BC,可得DE=BD=BC;
(2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,则可根据“SAS”判断△DCP≌△DBF,则CP=BF,利用CP+BP =BC,DE=BC可得到DE =(BF+BP).
【详解】
解:(1)∵∠ACB=90°,∠A=30°,
∴∠B=60°,
∵点D是AB的中点,
∴DB=DC,
∴△DCB为等边三角形,
∵DE⊥BC,
∴DE=BC;
故答案为DE=BD=BC.
(2)DE =(BF+BP).理由如下:
∵线段DP绕点D逆时针旋转60°,得到线段DF,
∴∠PDF=60°,DP=DF,
而∠CDB=60°,
∴∠CDB-∠PDB=∠PDF-∠PDB,
∴∠CDP=∠BDF,
在△DCP和△DBF中
,
∴△DCP≌△DBF(SAS),
∴CP=BF,
而CP=BC-BP,
∴BF+BP=BC,
∵DE=BC,
∴DE =(BF+BP);
故答案为DE =(BF+BP).
本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质以及含30度的直角三角形三边的关系.
题号
一
二
三
四
五
总分
得分
批阅人
车辆数(辆)
载客量(人)
租金(元)
甲种客车
x
45x
400x
乙种客车
________
__________
_________
x(元)
15
20
25
……
y(件)
25
20
15
……
车辆数(辆)
载客量(人)
租金(元)
甲种客车
x
45x
400x
乙种客车
8﹣x
30(8﹣x)
280(8﹣x)
江苏省南京玄武区六校联考2024-2025学年九年级数学第一学期开学考试试题【含答案】: 这是一份江苏省南京玄武区六校联考2024-2025学年九年级数学第一学期开学考试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省南京玄武区2025届数学九上开学联考模拟试题【含答案】: 这是一份江苏省南京玄武区2025届数学九上开学联考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省南京市六校联考2025届数学九年级第一学期开学检测模拟试题【含答案】: 这是一份江苏省南京市六校联考2025届数学九年级第一学期开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。