江苏省南京市六校联考2025届数学九年级第一学期开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形ABCD的两条对角线交于点O,若,,则AC等于( )
A.8B.10C.12D.18
2、(4分)不等式3(x-2)≥x+4的解集是( )
A.x≥5B.x≥3C.x≤5D.x≥-5
3、(4分)如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠BCE=28°,则∠D=( )
A.28°B.38°C.52°D.62°
4、(4分)下列图象能表示一次函数的是( )
A.B.C.D.
5、(4分)如图,在矩形ABCD中,对角线AC,BD交于点O,若∠COD=58°,则∠CAD的度数是( )
A.22°B.29°C.32D.61°
6、(4分)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为( )
A.B.
C.D.
7、(4分)已知关于的方程是一元二次方程,则的取值范围是( )
A.B.C.D.任意实数
8、(4分)对于一次函数y=-3x+2,①图象必经过点(-1,-1);②图象经过第一、二、四象限;③当x>1时,y<0;④y的值随着x值的增大而增大,以上结论正确的个数是( )
A.0个B.1个C.2个D.3个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,直线y=x-1与矩形OABC的边BC、OC分别交于点E、F,已知OA=3,OC=4,则的面积是_________.
10、(4分)在直角坐标系中,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2,再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3…按照这样的作法进行下去,则点A20的坐标是______.
11、(4分)直线向上平移4个单位后,所得直线的解析式为________.
12、(4分)在2017年的理化生实验考试中某校6名学生的实验成绩统计如图,这组数据的众数是___分.
13、(4分)如图,在平行四边形ABCD中,BE平分∠ABC,交AD于点E,AB=3cm,ED=cm,则平行四边形ABCD的周长是_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)一辆轿车从甲地驶往乙地,到达乙地后立即返回甲地,速度是原来的1.5倍,往返共用t小时.一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶,设轿车行驶的时间为x(h),两车离开甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图所示.
(1)轿车从乙地返回甲地的速度为 km/t,t= h ;
(2)求轿车从乙地返回甲地时y与x之间的函数关系式;
(3)当轿车从甲地返回乙地的途中与货车相遇时,求相遇处到甲地的距离.
15、(8分)如图,已知G、H是△ABC的边AC的三等分点,GE∥BH,交AB于点E,HF∥BG交BC于点F,延长EG、FH交于点D,连接AD、DC,设AC和BD交于点O,求证:四边形ABCD是平行四边形.
16、(8分)某乳品公司向某地运输一批牛奶,由铁路运输每千克需运费0.60元,由公路运输,每千克需运费0.30元,另需补助600元
(1)设该公司运输的这批牛奶为x千克,选择铁路运输时,所需运费为y1元,选择公路运输时,所需运费为y2元,请分别写出y1、y2与x之间的关系式;
(2)若公司只支出运费1500元,则选用哪种运输方式运送的牛奶多?若公司运送1500千克牛奶,则选用哪种运输方式所需费用较少?
17、(10分)如图,在▱ABCD中,∠BAD的角平分线交BC于点E,交DC的延长线于点F,连接DE.
(1)求证:DA=DF;
(2)若∠ADE=∠CDE=30°,DE=2,求▱ABCD的面积.
18、(10分)已知5x+y=2,5y﹣3x=3,在不解方程组的条件下,求3(x+3y)2﹣12(2x﹣y)2的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)两人从同一地点同时出发,一人以30m/min的速度向北直行,一人以30m/min的速度向东直行,10min后他们相距__________m
20、(4分)用反证法证明“若,则”时,应假设_____.
21、(4分)把二次函数y= -2x2-4x-1的图象向上平移3个单位长度,再向右平移4个单位长度,则两次平移后的图象的解析式是 _____________;
22、(4分)已知为实数,且,则______.
23、(4分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)将函数y=x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|x+b|(b为常数)的图象
(1)当b=0时,在同一直角坐标系中分别画出函数与y=|x+b|的图象,并利用这两个图象回答:x取什么值时,比|x|大?
(2)若函数y=|x+b|(b为常数)的图象在直线y=1下方的点的横坐标x满足0<x<3,直接写出b的取值范围
25、(10分)如图,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=1.
(1)求反比例函数解析式;
(2)求点C的坐标.
26、(12分)学校规定学生的学期总评成绩满分为100分,学生的学期总评成绩根据平时成绩、期中考试成绩和期末考试成绩按照2∶3∶5的比确定,小欣的数学三项成绩依次是85、90、94,求小欣这学期的数学总评成绩.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先根据矩形的性质得出,再利用直角三角形的性质即可得.
【详解】
四边形ABCD是矩形
在中,,
则
故选:C.
本题考查了矩形的性质、直角三角形的性质,掌握矩形的性质是解题关键.
2、A
【解析】
去括号、移项,合并同类项,系数化成1即可.
【详解】
3(x-2)≥x+4
3x-6≥x+4
2x≥10
∴x≥5
故选A.
本题考查了解一元一次不等式.注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.
3、D
【解析】
由CE⊥AB得出∠CEB=90°,根据三角形内角和定理求出∠B,根据平行四边形的性质即可得出∠D的值.
【详解】
解:∵CE⊥AB,
∴∠CEB=90°,
∵∠BCE=28°,
∴∠B=62°,
∵四边形ABCD是平行四边形,
∴∠D=∠B=62°,
故选:D.
本题考查了三角形的内角和定理,垂直定义和平行四边形的性质,能求出∠B的度数和根据平行四边形的性质得出∠B=∠D是解此题的关键.
4、D
【解析】
将y=k(x-1)化为y=kx-k后分k>0和k<0两种情况分类讨论即可.
【详解】
y=k(x-1)=kx-k,
当k>0时,-k<0,此时图象呈上升趋势,且交与y轴负半轴,无符合选项;
当k<0时,-k>0,此时图象呈下降趋势,且交与y轴正半轴,D选项符合;
故选:D.
考查了一次函数的性质,解题的关键是能够分类讨论.
5、B
【解析】
只要证明OA=OD,根据三角形的外角的性质即可解决问题.
【详解】
∵四边形ABCD是矩形,
∴OA=OD,
∴∠OAD=∠ODA,
∵∠COD=∠CAD+∠ODA=58°,
∴∠CAD=29°
故选B.
本题考查矩形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
6、A
【解析】
分析:根据定义可将函数进行化简.
详解:当﹣1≤x<0,[x]=﹣1,y=x+1
当0≤x<1时,[x]=0,y=x
当1≤x<2时,[x]=1,y=x﹣1
……
故选A.
点睛:本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.
7、A
【解析】
利用一元二次方程的定义求解即可.
【详解】
解:∵关于x的方程是一元二次方程,
∴m+1≠0,即m≠−1,
故选:A.
此题主要考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.
8、B
【解析】
根据一次函数图象上点的坐标特征对①进行判断;根据一次函数的性质对②、④进行判断;利用x>1时,函数图象在y轴的左侧,y<1,则可对③进行判断.
【详解】
解:①、当x=-1时,y=-3x+2=5,则点(-1,-1)不在函数y=-3x+2的图象上,所以①选项错误;
②、k=-3<0,b=2>0,函数图象经过第一、二、四象限,所以②选项正确;
③、当x>1时,y<-1,所以③选项错误;
④、y随x的增大而减小,所以④选项错误.
故选:B.
本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先根据直线的解析式求出点F的坐标,从而可得OF、CF的长,再根据矩形的性质、OC的长可得点E的横坐标,代入直线的解析式可得点E的纵坐标,从而可得CE的长,然后根据直角三角形的面积公式即可得.
【详解】
对于一次函数
当时,,解得
即点F的坐标为
四边形OABC是矩形
点E的横坐标为4
当时,,即点E的坐标为
则的面积是
故答案为:.
本题考查了一次函数的几何应用、矩形的性质等知识点,利用一次函数的解析式求出点E的坐标是解题关键.
10、(219,0)
【解析】
根据题意,由(1,0)和直线关系式y=x,可以求出点B1的坐标,在Rt△OA1B1中,根据勾股定理,可以求出OB1的长;再根据OB1=OA2确定A2点坐标,同理可求出A3、A4、A5……,然后再找规律,得出An的坐标,从而求得点A20的坐标.
【详解】
当时,,即A1B1=,
在Rt△OA1B1中,由勾股定理得OB1=2,
∵OB1=OA2,
∴A2 (2,0)
同理可求:A3(4,0)、A4(8,0)、A5(16,0)……
由点:A1(1,0)、A2(2,0)、A3(4,0)、A4(8,0)、A5(16,0)……
即:A1(20,0)、A2(21,0)、A3(22,0)、A4(23,0)、A5(24,0)……可得An(2n-1,0)
∴点A20的坐标是(219,0),
故答案为:(219,0).
考查一次函数图象上的点坐标特征,勾股定理,以及点的坐标的规律性.在找规律时,A点的横坐标的指数与A所处的位数容易搞错,应注意.
11、
【解析】
根据“上加下减”的原则进行解答即可.
【详解】
由“上加下减”的原则可知,将直线向上平移4个单位后所得的直线的解析式是+4,即.
故答案为:.
本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
12、1
【解析】
根据图象写出这组数据,再根据一组数据中出现次数最多的数据叫做众数求解.
【详解】
解:由图可得,
这组数据分别是:24,24,1,1,1,30,
∵1出现的次数最多,
∴这组数据的众数是1.
故答案为:1.
本题考查折线统计图和众数,解答本题的关键是明确众数的定义,利用数形结合的思想解答.
13、15cm
【解析】
分析:由平行四边形ABCD得到AB=CD,AD=BC,AD∥BC,再和已知BE平分∠ABC,进一步推出∠ABE=∠AEB,即AB=AE=3,即可求出AD的长,就能求出答案.
详解:∵四边形ABCD是平行四边形,∴AB=CD=3cm,AD=BC,AD∥BC,∴∠AEB=∠EBC, ∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=3,∴AD=AE+DE=3+=4.5,∴AD=BC=4.5,∴平行四边形的周长是2(AB+BC)=2(3+4.5)=15(cm).
故答案为:15cm.
点睛:本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
三、解答题(本大题共5个小题,共48分)
14、 (1) 120; ;(2) y=-120x+300; (3) 100km.
【解析】
(1)根据图象可得当x=小时时,据甲地的距离是120千米,即可求得轿车从甲地到乙地的速度,进而求得轿车从乙地返回甲地的速度和t的值;
(2)利用待定系数法即可求解;
(3)利用待定系数法求得轿车从乙地到甲地的函数解析式和货车路程和时间的函数解析式,求交点坐标即可.
【详解】
解:(1)轿车从甲地到乙地的速度是: =80(千米/小时),
则轿车从乙地返回甲地的速度为80×1.5=120(千米/小时),
则t=+=(小时).
故答案是:120,;
(2)设轿车从乙地返回甲地的函数关系式为:y=kx+b.
将(,120)和(,0),两点坐标代入,得 ,
解得: ,
所以轿车从乙地返回甲地时y与x之间的函数关系式为:y=-120x+300;
(3)设货车从甲地驶往乙地的函数关系式为:y=ax 将点(2,120)代入解得,
解得a=60,故货车从甲地驶往乙地时y与x之间的函数关系式为:y=60x.
由图象可知当轿车从乙地返回甲地时,两车相遇,路程相等,即-120x+300=60x
解得x=,当x=时,y=100.
故相遇处到甲地的距离为100km
本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题,熟练掌握待定系数法和一次函数图像交点坐标与二元一次方程组的关系是关键.
15、证明见解析.
【解析】
分析:根据题意得出EG、FH分别是△ABH和△CBG的中位线,从而得出ED∥BH,FD∥BG,即四边形BHDG是平行四边形,从而得出OB=OD,OG=OH,结合AG=CH得出OA=OC,从而根据对角线互相平分的四边形是平行四边形得出答案.
详解:证明:∵G、H是AC的三等分点且GE∥BH,HF∥BG,
∴AG=GH=HC,EG、FH分别是△ABH和△CBG的中位线, ∴ED∥BH,FD∥BG,
∴四边形BHDG是平行四边形, ∴OB=OD,OG=OH,OA=OG+AG=OH+CH=OC,
∴四边形ABCD是平行四边形.
点睛:本题主要考查的是平行四边形的性质与判定,属于中等难度的题型.根据中位线的性质得出四边形BHDG是平行四边形是解决这个问题的关键.
16、(1);(2)公路运输方式运送的牛奶多,铁路运输方式所需用较少.
【解析】
分析:(1)由总价=单价×数量+其他费用,就可以得出y与x之间的函数关系式;
(2)将y=1500或x=1500分别代入(1)的解析式就可以求出结论;
详解:(1),
(2) 解得:,
解得:.
∵ 3000>2500,
∴ 公路运输方式运送的牛奶多,
∴ (元),
(元).
∵ 1050>900,
∴ 铁路运输方式所需费用较少.
点睛:本题考查了单价×数量=总价的运用,由函数值求自变量的值及由自变量的值求函数值的运用,有理数大小比较的运用,分类讨论思想的运用,解答时求出函数的解析式是关键.
17、(1)详见解析;(1)4
【解析】
(1)根据平行四边形的性质得出AB=CD,AD∥BC,求出∠FAD=∠AFB,根据角平分线定义得出∠FAD=∠FAB,求出∠AFB=∠FAB,即可得出答案;
(1)求出△ABF为等边三角形,根据等边三角形的性质得出AF=BF=AB,∠ABE=60°,在Rt△BEF中,∠BFA=60°,BE=,解直角三角形求出EF=1,BF=4,AB=BF=4,BC=AD=1,即可得出答案.
【详解】
(1)证明:∵四边形ABCD为平行四边形,
∴AB∥CD.
∴∠BAF=∠F.
∵AF平分∠BAD,
∴∠BAF=∠DAF.
∴∠F=∠DAF.
∴AD=FD.
(1)解:∵∠ADE=∠CDE=30°,AD=FD,
∴DE⊥AF.
∵tan∠ADE=,
∴AE=1.
∴S平行四边形ABCD=1S△ADE=AE•DE=4.
本题考查了平行四边形的性质及解直角三角形的知识,体现了转化的数学思想,难度不大.
18、1.
【解析】
将原式进行因式分解,便可转化为已知的代数式组成的式子,进而整体代入,便可求得其值.
【详解】
原式=3[(x+3y)2﹣4(2x﹣y)2]
=3[(x+3y)+2(2x﹣y)](x+3y)﹣2(2x﹣y)]
=3(5x+y)(5y﹣3x),
∵5x+y=2,5y﹣3x=3,
∴原式=3×2×3=1.
本题主要考查了因式分解,求代数式的值,整体思想,正确地进行因式分解,将未知代数式转化为已知代数式的式子,是本题解题的关键所在.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
两人从同一地点同时出发,一人以30m/min的速度向北直行
【详解】
解:设10min后,OA=30×10=300(m),
OB=30×10=300(m),
甲乙两人相距AB=(m).
故答案为:.
本题考查的是勾股定理的应用,根据题意判断直角三角形是解答此题的关键.
20、
【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.
【详解】
解:用反证法证明“若,则”时,应假设.
故答案为:.
此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
21、y= -2x2+12x-2
【解析】
先把抛物线化为顶点式,再按照“左加右减,上加下减”的规律,即可求出平移后的函数表达式.
【详解】
解:把抛物线的表达式化为顶点坐标式,y=-2(x+1)2+1.
按照“左加右减,上加下减”的规律,向上平移3个单位,再向右平移4个单位,得
y=-2(x+1-4)2+1+3=-2(x-3)2+4=-2x2+12x-2.
故答案为:y=-2x2+12x-2.
本题考查二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.同时考查了学生将一般式转化顶点式的能力.
22、或.
【解析】
根据二次根式有意义的条件可求出x、y的值,代入即可得出结论.
【详解】
∵且,∴,∴,∴或.
故答案为:或.
本题考查了二次根式有意义的条件.解答本题的关键由二次根式有意义的条件求出x、y的值.
23、(5,4).
【解析】
利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.
【详解】
解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,
∴AB=5,
∴DO=4,
∴点C的坐标是:(5,4).
故答案为(5,4).
二、解答题(本大题共3个小题,共30分)
24、(1)见解析,;(2)
【解析】
(1)画出函数图象,求出两个函数图象的交点坐标,利用图象法即可解决问题;
(2)利用图象法即可解决问题.
【详解】
解:
(1)当b=0时,y=|x+b|=|x|
列表如下:
描点并连线;
∴如图所示:该函数图像为所求
∵
∴或
∴两个函数的交点坐标为A,B(2,2),
∴观察图象可知:时,比大;
(2)如图,观察图象可知满足条件的b的值为,
本题主要考查了一次函数的图象,一次函数的性质,一次函数图象与几何变换,掌握一次函数的图象,一次函数的性质,一次函数图象与几何变换是解题的关键.
25、(1)反比例函数解析式为y=;(2)C点坐标为(2,1)
【解析】
(1)由S△BOD=1可得BD的长,从而可得D的坐标,然后代入反比例函数解析式可求得k,从而得解析式为y=;
(2)由已知可确定A点坐标,再由待定系数法求出直线AB的解析式为y=2x,然后解方程组即可得到C点坐标.
【详解】
(1)∵∠ABO=90°,OB=1,S△BOD=1,
∴OB×BD=1,解得BD=2,
∴D(1,2)
将D(1,2)代入y=,
得2=,
∴k=8,
∴反比例函数解析式为y=;
(2)∵∠ABO=90°,OB=1,AB=8,
∴A点坐标为(1,8),
设直线OA的解析式为y=kx,
把A(1,8)代入得1k=8,解得k=2,
∴直线AB的解析式为y=2x,
解方程组得或,
∴C点坐标为(2,1).
26、小欣这学期的数学总评成绩为91分.
【解析】
根据加权平均数的计算公式即可得.
【详解】
由题意得:小欣这学期的数学总评成绩为(分)
答:小欣这学期的数学总评成绩为91分.
本题考查了加权平均数的应用,熟记公式是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
x
-1
0
1
1
y=|x|
1
0
1
2025届江苏省盐城市十校联考数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2025届江苏省盐城市十校联考数学九年级第一学期开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省苏州区学校七校联考数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2025届江苏省苏州区学校七校联考数学九年级第一学期开学检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省苏州区六校联考数学九上开学复习检测模拟试题【含答案】: 这是一份2024年江苏省苏州区六校联考数学九上开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。