江苏省南京秦淮区南航附中2024年数学九年级第一学期开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,动点P从出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角当点P第2018次碰到矩形的边时,点P的坐标为
A.B.C.D.
2、(4分)学校把学生学科的期中、期末两次成绩分别按40%,60%的比例计入学期学科总成绩.小明期中数学成绩是85分,期末数学总成绩是90分,那么他的学期数学成绩( )
A.85分 B.1.5分 C.88分 D.90分
3、(4分)如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F,若DF=3,则AC的长为( )
A.B.C.D.
4、(4分)满足下述条件的三角形中,不是直角三角形的是
A.三个内角之比为1:2:3B.三条边长之比为1::
C.三条边长分别为,,8D.三条边长分别为41,40,9
5、(4分)设、是方程的两根,则+=( )
A.-3B.-1C.1D.3
6、(4分)已知三角形的三边为2、3、4,该三角形的面积为( )
A.B.C.D.
7、(4分)已知一个直角三角形的两边长分别为3和4,则第三边长为( )
A.5B.7C.D.或5
8、(4分)下列函数:①y=2x+1 ②y=③y=x2﹣1 ④y=﹣8x中,是一次函数的有( )
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在分式中,当x=___时分式没有意义.
10、(4分)如图,将绕点按逆时针方向旋转得到,使点落在上,若,则的大小是______°.
11、(4分)写出在抛物线上的一个点________.
12、(4分)若关于的一元二次方程有两个相等的实数根,则的值是__________.
13、(4分)一组数据2,3,3,1,5的众数是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,在平面直角坐标系中,O为坐标原点,点A(﹣4,0),直线l∥x轴,交y轴于点C(0,3),点B(﹣4,3)在直线l上,将矩形OABC绕点O按顺时针方向旋转α度,得到矩形OA′B′C′,此时直线OA′、B′C′分别与直线l相交于点P、Q.
(1)当α=90°时,点B′的坐标为 .
(2)如图2,当点A′落在l上时,点P的坐标为 ;
(3)如图3,当矩形OA′B′C′的顶点B′落在l上时.
①求OP的长度;②S△OPB′的值是 .
(4)在矩形OABC旋转的过程中(旋转角0°<α≤180°),以O,P,B′,Q为顶点的四边形能否成为平行四边形?如果能,请直接写出点B′和点P的坐标;如果不能,请简要说明理由.
15、(8分)在▱ABCD中,∠ADC的平分线交直线BC于点E,交直线AB于点F.
(1)如图①,证明:BE=BF.
(2)如图②,若∠ADC=90°,O为AC的中点,G为EF的中点,试探究OG与AC的位置关系,并说明理由.
(3)如图③,若∠ADC=60°,过点E作DC的平行线,并在其上取一点K(与点F位于直线BC的同侧),使EK=BF,连接CK,H为CK的中点,试探究线段OH与HA之间的数量关系,并对结论给予证明.
16、(8分)某商店计划购进,两种型号的电机,其中每台型电机的进价比型多元,且用元购进型电机的数量与用元购进型电机的数量相等.
(1)求,两种型号电机的进价;
(2)该商店打算用不超过元的资金购进,两种型号的电机共台,至少需要购进多少台型电机?
17、(10分)以四边形ABCD的边AB,AD为边分别向外侧作等边三角形ABF和等边三角形ADE,连接EB,FD,交点为G.
(1)当四边形ABCD为正方形时,如图①,EB和FD的数量关系是 ;
(2)当四边形ABCD为矩形时,如图②,EB和FD具有怎样的数量关系?请加以证明;
(3)如图③,四边形ABCD由正方形到矩形再到一般平行四边形的变化过程中,EB和FD具有怎样的数量关系?请直接写出结论,无需证明.
18、(10分)如图所示,,分别表示使用一种白炽灯和一种节能灯的费用(元,分别用y1与y2表示)与照明时间(小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.
(1)根据图象分别求出,对应的函数(分别用y1与y2表示)关系式;
(2)对于白炽灯与节能灯,请问该选择哪一种灯,使用费用会更省?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知点P(x1,y1),Q(x2,y2)是反比例函数y=(x>0)图象上两点,若y1>y2,则x1,x2的大小关系是_____.
20、(4分)如图,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),给出以下个结论:①CD=BE;②四边形CDFE不可能是正方形;③△DFE是等腰直角三角形;④S四边形CDFE=S△ABC.上述结论中始终正确的有______.(填序号)
21、(4分)将直线向上平移个单位后,可得到直线_______.
22、(4分)将圆心角为90°,面积为4π的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为_____________________.
23、(4分)在 中,若是 的正比例函数,则常数 _____.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了准备“欢乐颂——创意市场”,初2020级某同学到批发市场购买了、两种原材料,的单价为每件6元,的单价为每件3元.该同学的创意作品需要材料的数量是材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.
(1)该同学最多购买多少件材料;
(2)在该同学购买材料最多的前提下,用所购买的,两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高标价,但无人问津,于是该同学在标价的基础上降低出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了,求的值.
25、(10分)2019年4月23日世界读书日这天,滨江初二年级的学生会,就2018年寒假读课外书数量(单位:本)做了调查,他们随机调查了甲、乙两个班的10名同学,调查过程如下
收集数据
甲、乙两班被调查者读课外书数量(单位:本)统计如下:
甲:1,9,7,4,2,3,3,2,7,2
乙:2,6,6,3,1,6,5,2,5,4
整理、描述数据绘制统计表如下,请补全下表:
分析数据、推断结论
(1)该校初二乙班共有40名同学,你估计读6本书的同学大概有_____人;
(2)你认为哪个班同学寒假读书情况更好,写出理由.
26、(12分)解下列一元二次方程
(1) (2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.
【详解】
如图,
经过6次反弹后动点回到出发点(0,3),
∵2018÷6=336…2,
∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,
点P的坐标为(7,4).
故选C.
本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.
2、C
【解析】
根据学期数学成绩=期中数学成绩×所占的百分比+期末数学成绩×所占的百分比即可求得学期总成绩.
【详解】
小明这学期总评成绩=85×40%+90×60%=2.
故选:C.
本题考查的是加权平均数的求法.解题的关键是根据期中、期末两次成绩所占的比例,列出算式,是一道基础题.
3、C
【解析】
首先根据条件D、E分别是AC、BC的中点可得DE∥AB,再求出∠2=∠3,根据角平分线的定义推知∠1=∠3,则∠1=∠2,所以由等角对等边可得到DA=DF=AC.
【详解】
如图,
∵D、E分别为AC、BC的中点,
∴DE∥AB,
∴∠2=∠3,
又∵AF平分∠CAB,
∴∠1=∠3,
∴∠1=∠2,
∴AD=DF=3,
∴AC=2AD=1.
故选C.
本题考查了三角形中位线定理,等腰三角形的判定与性质.三角形中位线的定理是:三角形的中位线平行于第三边且等于第三边的一半.
4、C
【解析】
根据勾股定理的逆定理逐项判断即可.
【详解】
解:A、根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;
B、,其符合勾股定理的逆定理,所以是直角三角形;
C、,不符合勾股定理的逆定理,所以不是直角三角形;
D、,符合勾股定理的逆定理,所以是直角三角形;
故选C.
本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.
5、B
【解析】
根据一元二次方程根与系数的关系解答即可.
【详解】
解:∵、是方程的两根,
∴+=-1.
故选:B
本题考查了一元二次方程根与系数的关系,若是一元二次方程的两个根,则.
6、D
【解析】
如图所示:过点B作BD⊥AC于点D,利用勾股定理得出BD的长,进而利用三角形面积求法得出答案.
【详解】
如图所示:过点B作BD⊥AC于点D,
设BD=x,CD=y,
则AD=4-y,
在Rt△BDC中,x2+y2=32,
在Rt△ABD中,x2+(4-y)2=22,
故9+16-8y=4,解得:y= ,
∴x2+()2=9,解得:x=
故三角形的面积为:
故选:D.
本题考查勾股定理的应用,根据题意得出三角形的高的值是解题关键.
7、D
【解析】
分两种情况:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为,故选D.
8、B
【解析】
根据一次函数的定义来分析判断即可,在某一个变化过程中,设有两个变量x和y,如果满足这样的关系:y=kx+b(k为一次项系数且k≠0,b为任意常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量 (又称函数).
【详解】
解:①y=2x+1是一次函数,②y=是反比例函数,不是一次函数,③y=x2﹣1是二次函数,不是一次函数,④y=﹣8x是一次函数,
故选:B.
一次函数的定义是本题的考点,熟练掌握其定义是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1.
【解析】
根据分式无意义,分母等于0得,1+x=0,
解得x=﹣1,
故答案为﹣1.
10、48°
【解析】
根据旋转得出AC=DC,求出∠CDA,根据三角形内角和定理求出∠ACD,即可求出答案.
【详解】
∵将△ABC绕点C按逆时针方向旋转,得到△DCE,点A的对应点D落在AB边上,
∴AC=DC,
∵∠CAB=66°,
∴∠CDA=66°,
∴∠ACD=180°-∠A-∠CDA=48°,
∴∠BCE=∠ACD=48°,
故答案为:48°.
本题考查了三角形内角和定理,旋转的性质的应用,能求出∠ACD的度数是解此题的关键.
11、(0,﹣4)(答案不唯一)
【解析】
把(0,﹣4)点的横坐标代入函数式,比较纵坐标是否相符,即可解答.
【详解】
将(0,﹣4)代入,
得到 ,
故(0,﹣4)在抛物线上,
故答案为:(0,﹣4).
此题考查二次函数图象上点的坐标特征,解题关键在于把点代入解析式.
12、1
【解析】
因为关于的一元二次方程有两个相等的实数根,故 ,代入求解即可.
【详解】
根据题意可得: 解得:m=1
故答案为:1
本题考查的是一元二次方程的根的判别式,掌握根的判别式与方程的根的关系是关键.
13、3
【解析】
根据众数的定义进行求解即可得.
【详解】
数据2,3,3,1,5中数据3出现次数最多,
所以这组数据的众数是3,
故答案为3.
本题考查了众数,熟练掌握众数的定义以及求解方法是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)(1,4);(2)(﹣,1);(1)①OP= ;② ;(4)在矩形OABC旋转的过程中(旋转角0°<α≤180°),以O,P,B′,Q为顶点的四边形能成为平行四边形,此时点B′的坐标为(5,0),点P的坐标为(4,1).
【解析】
(1)根据旋转的得到B′的坐标;
(2)根据在Rt△OCA′,利用勾股定理即可求解;
(1)①根据已知条件得到△CPO≌△A′PB′,设OP=x,则CP=A′P=4﹣x,在Rt△CPO中,利用OP2=OC2+CP2,即x2=(4﹣x)2+12即可求出x的值,即可求解;②根据S△OPB′=PB′•OC即可求解;
(4)当点B′落在x轴上时,由OB′∥PQ,OP∥B′Q,此时四边形OPQB′为平行四边形,再根据平行四边形的性质即可求解.
【详解】
解:(1)∵A(﹣4,0),B(﹣4,1),
∴OA=4,AB=1.
由旋转的性质,可知:OA′=OA=4,A′B′=AB=1,
∴当α=90°时,点B′的坐标为(1,4).
故答案为:(1,4).
(2)在Rt△OCA′中,OA′=4,OC=1,
∴A′C==,
∴当点A′落在l上时,点P的坐标为(﹣,1).
故答案为:(﹣,1).
(1)①当四边形OA′B′C′的顶点B′落在BC的延长线上时,
在△CPO和△A′PB′中,,
∴△CPO≌△A′PB′(AAS),
∴OP=B′P,CP=A′P.
设OP=x,则CP=A′P=4﹣x.
在Rt△CPO中,OP=x,CP=4﹣x,OC=1,
∴OP2=OC2+CP2,即x2=(4﹣x)2+12,
解得:x=,
∴OP=.
②∵B′P=OP=,
∴S△OPB′=PB′•OC=××1=.
故答案为:.
(4)当点B′落在x轴上时,∵OB′∥PQ,OP∥B′Q,
∴此时四边形OPQB′为平行四边形.
过点A′作A′E⊥x轴于点E,如图4所示.
∵OA′=4,A′B′=1,
∴OB′==5,A′E==,OE==,
∴点B′的坐标为(5,0),点A′的坐标为(,).
设直线OA′的解析式为y=kx(k≠0),
将A′(,)代入y=kx,得:
=k,解得:k=,
∴直线OA′的解析式为y=x.
当y=1时,有x=1,
解得:x=4,
∴点P的坐标为(4,1).
∴在矩形OABC旋转的过程中(旋转角0°<α≤180°),以O,P,B′,Q为顶点的四边形能成为平行四边形,此时点B′的坐标为(5,0),点P的坐标为(4,1).
此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质、全等三角形的判定与性质.
15、(1)详见解析;(2)GO⊥AC;(3)AH=OH
【解析】
(1)根据平行线的性质得出∠E=∠ADF,∠EFB=∠EDC,再利用ED平分∠ADC,即可解答
(2)连接BG,AG,根据题意得出四边形ABCD是矩形,再利用矩形的性质,证明△ABG≌△CEG,即可解答
(3)连接AK,BK,FK,先得出四边形BFKE是菱形,,再利用菱形的性质证明△KBE,△KBF都是等边三角形,再利用等边三角形的性质得出△ABK≌△CEK,最后利用三角函数即可解答
【详解】
(1)证明:如图①中,因为四边形ABCD为平行四边形,
所以,AD∥EC,AB∥CD,
所以,∠E=∠ADF,∠EFB=∠EDC,
因为ED平分∠ADC,
所以,∠ADF=∠EDC,
所以,∠E=∠EFB,
所以,BE=BF
(2)解:如图⊙中,结论:GO⊥AC
连接BG,AG
∵四边形ABCD是平行四边形,∠ADC=90°,
四边形ABCD是矩形,
∠ABC=∠ABE=90°,
由(1)可知:BE=BF,
∵∠EBF=90°,EG=FG,
∴∠E=45°,∠GBF=∠GBE=45°,BG=GE=GF,
∵∠DCE=90°
∴∠E=∠EDC=45°,
∴DC=CE=BA,
∵∠ABG=∠E=45°,AB=EC,BG=EG,
∴△ABG≌△CEG(SAS),
∵GA=GC
∴AO=OC.
∴GO⊥AC
(3)解:如图⊙中,连接AK,BK,FK
∵BF=EK,BF∥EK,
∴四边形BFKE是平行四边形,
∵BF=BE,
∴四边形BFKE是菱形,
∵边形ABCD是平行四边形,
∴∠ADC=∠ABC=60°,∠DCB=∠DAB=120°
∴∠EBF=120°,
∴∠KBE=∠KBF=60°
BF=BE=FK=EK,
∴△KBE,△KBF都是等边三角形,
∴∠ABK=∠CEK=60°,∠FEB=∠FEK=30
∴∠CDE=∠CED=30°
∴CD=CE=BA,
∵BK=EK,
∴△ABK≌△CEK(SAS)
∴AK=CK,∠AKB=∠CKB
∴∠AKC=∠BKE=60°
∴△ACK是等边三角形
∵OA=OC,CH=HK
∴AK=2OH,AH⊥CK,
∴AH=AK·cs30°= AK
∴AH= OH.
此题考查平行四边形的性质,矩形的判定与性质,全等三角形的判定与性质,等边三角形的判定与性质,解题关键在于作辅助线
16、(1)进价元,进价元;(2)购进型至少台
【解析】
(1) 设进价为元,则进价为元,根据元购进型电机的数量与用元购进型电机的数量相等,即可得出关于x的分式方程,解分式方程经检验后即可得出结论;
(2) 设购进型台,则购进型台,根据用不超过元的资金购进,两种型号的电机共台,即可得出关于y的一元一次不等式,解不等式即可得出结论.
【详解】
(1)解:设进价为元,则进价为元,
解得:
经检验是原分式方程的解
进价元,进价元.
(2)设购进型台,则购进型台.
购进型至少台.
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是找准等量关系,正确列出分式方程.
17、(1)DF=BE;(2)EB=FD,证明见解析;(3)DF=BE
【解析】
(1)根据题意可得AB=AF,AD=AE,∠FAB=∠EAD,即可得∠FAD=∠EAB,则可证△AFD≌△AEB,可得BE=DF
(2)根据题意可得AB=AF,AD=AE,∠FAB=∠EAD,即可得∠FAD=∠EAB,则可证△AFD≌△AEB,可得BE=DF
(3)根据题意可得AB=AF,AD=AE,∠FAB=∠EAD,即可得∠FAD=∠EAB,则可证△AFD≌△AEB,可得BE=DF.
【详解】
解:(1)∵四边形ABCD是正方形
∴AB=AD,∠BAD=90°
∵△BAF和△AED是等边三角形
∴AF=AB,AD=AE,∠FAB=∠EAD=60°
∴AE=AD=AF=AB,∠FAD=∠EAB
∴△ABE≌△ADF
∴DF=BE
故答案为DF=BE
(2)EB=FD
理由如下:
∵△BAF和△AED是等边三角形
∴AF=AB,AD=AE,∠FAB=∠EAD=60°
∴∠FAB+∠BAD=∠EAD+∠BAD
∴∠FAD=∠EAB
又∵AF=AB,AE=AD
∴△ABE≌△AFD
∴DF=BE
(3)BE=DF
理由如下∵△BAF和△AED是等边三角形
∴AF=AB,AD=AE,∠FAB=∠EAD=60°
∴∠FAB+∠BAD=∠EAD+∠BAD
∴∠FAD=∠EAB
又∵AF=AB,AE=AD
∴△ABE≌△AFD
∴DF=BE
本题考查了四边形的综合题,等边三角形的性质,灵活运用等边三角形的性质是解决问题的关键.
18、(1)y1=x+2,y2=x+20(2)见解析
【解析】
(1)由图像可知,l1的函数为一次函数,则设y1=k1x+b1.由图象知,l1过点(0,2)、(500,17),能够得出l 1的函数解析式.同理可以得出l2的函数解析式.
(2)由图像可知l1、 l2的图像交于一点,那么交点处白炽灯和节能灯的费用相同,即x+2=x+20,由此得出x=1000时费用相同;x<1000时,使用白炽灯省钱;x>1000时,使用节能灯省钱.
【详解】
(1)设l1的函数解析式为y1=k1x+b1,
由图象知,l1过点(0,2)、(500,17),
可得方程组,解得,
故,l1的函数关系式为y1=x+2;
设l2的函数解析式为y2=k2x+b2,
由图象知,l2过点(0,20)、(500,26),
可得方程组,解得,
y2=x+20;
(2)由题意得,x+2=x+20,解得x=1000,
故,①当照明时间为1000小时时,两种灯的费用相同;
②当照明时间超过1000小时,使用节能灯省钱.
③当照明时间在1000小时以内,使用白炽灯省钱.
本题主要考查求一次函数的解析式、一次函数在实际生活中的应用.一次函数为中考重点考查内容,熟练掌握求一次函数解析式的方法是解决本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x1<x1.
【解析】
根据题目中的函数解析式可以判断函数图象在第几象限和y随x的变化趋势,从而可以解答本题.
【详解】
∵反比例函数y=(x>0),
∴该函数图象在第一象限,y随x的增大而减小,
∵点P(x1,y1),Q(x1,y1)是反比例函数y=(x>0)图象上两点,y1>y1,
∴x1<x1,
故答案为:x1<x1.
本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.
20、①③④
【解析】
首先连接CF,由等腰直角三角形的性质可得:,则证得∠DCF=∠B,∠DFC=∠EFB,然后可证得:△DCF≌△EBF,由全等三角形的性质可得CD=BE,DF=EF,也可证得S四边形CDFE=S△ABC.问题得解.
【详解】
解:连接CF,
∵AC=BC,∠ACB=90°,点F是AB中点,
∴∠DCF=∠B=45°,
∵∠DFE=90°,
∴∠DFC+∠CFE=∠CFE+∠EFB=90°,
∴∠DFC=∠EFB,
∴△DCF≌△EBF,
∴CD=BE,故①正确;
∴DF=EF,
∴△DFE是等腰直角三角形,故③正确;
∴S△DCF=S△BEF,
∴S四边形CDFE=S△CDF+S△CEF=S△EBF+S△CEF=S△CBF=S△ABC.,故④正确.
若EF⊥BC时,则可得:四边形CDFE是矩形,
∵DF=EF,
∴四边形CDFE是正方形,故②错误.
∴结论中始终正确的有①③④.
故答案为:①③④.
此题考查了全等三角形的判定与性质,等腰直角三角形的性质,正方形的判定等知识.题目综合性很强,但难度不大,注意数形结合思想的应用.
21、
【解析】
根据“上加下减”原则进行解答即可.
【详解】
由“上加下减”原则可知,将直线向上平移个单位,得到直线的解析式为:,即
故答案为:
本题考查一次函数平移问题,根据“上加下减”原则进行解答即可.
22、1
【解析】
设扇形的半径为R,则=4π,解得R=4,
设圆锥的底面半径为r,
根据题意得=4π,
解得r=1,
即圆锥的底面半径为1.
23、2
【解析】
试题分析:本题主要考查的就是正比例函数的定义,一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,由此可得a﹣2=0,解出即可.
考点:正比例函数的定义.
二、解答题(本大题共3个小题,共30分)
24、(1)80件B种原材料;(2)1.
【解析】
(1)设该同学购买x件B种原材料,则购买x件A种原材料,由购买原材料的总费用不超过480元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其内的最大正整数即可;
(2)设y=a%,根据该同学在本次活动中赚了a%,即可得出关于y的一元二次方程,解之即可得出结论.
【详解】
(1)设该同学购买x件B种原材料,则购买x件A种原材料,
根据题意得:6×x+3×x≤480,
解得:x≤80,
∴x最大值为80,
答:该同学最多可购买80件B种原材料.
(2)设y=a%,
根据题意得:(520+480)×(1+2y)(1-y)=(520+480)×(1+y),
整理得:4y2-y=0,
解得:y=0.1或y=0(舍去),
∴a%=0.1,a=1.
答:a的值为1.
此题考查一元二次方程的应用以及一元一次不等式的应用,解题的关键是找准等量关系,列出不等式或方程.
25、统计图补全见解析 (1)12 (2)乙班,理由见解析
【解析】
根据平均数、众数、中位数、方差的概念填表
(1)根据样本求出读6本书的学生的占比,再用初二乙班总人数乘以占比即可求解;
(2)根据方差的性质进行判断即可.
【详解】
甲组的众数是2,乙组中位数是
乙组的平均数:
甲组的方差:
补全统计表如下:
(1)
(人)
故估计读6本书的同学大概有12人;
(2)乙班,乙班的方差较小,说明乙班学生普遍有阅读意识,而甲班方差较大,说明甲班虽然存在一部分读书意识较强的同学,但也存在一部分读书意识淡薄的同学.
本题考查了统计图的问题,掌握平均数、众数、中位数、方差的概念以及性质是解题的关键.
26、;.
【解析】
(1)利用因式分解法进行求解即可;
(2)利用公式法进行求解即可.
【详解】
(1),
(x+2)(x+8)=0
x+2=0或x+8=0,
所以;
(2),
a=3,b=6,c=-2,
b2-4ac=62-4×3×(-2)=60>0,
x===-1±,
所以.
本题考查了解一元二次方程,根据一元二次方程的特点选择适当的方法进行求解是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
班级
平均数
众数
中位数
方差
甲
4
3
乙
6
3.2
班级
平均数
众数
中位数
方差
甲
4
2
3
6.6
乙
4
6
4.5
3.2
江苏省南京市南航附中2023-2024学年九上数学期末综合测试模拟试题含答案: 这是一份江苏省南京市南航附中2023-2024学年九上数学期末综合测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,反比例函数的图象分布的象限是,下列说法正确的是,抛物线y=等内容,欢迎下载使用。
2023-2024学年江苏省南京市南航附中数学八年级第一学期期末调研模拟试题含答案: 这是一份2023-2024学年江苏省南京市南航附中数学八年级第一学期期末调研模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如果分式的值为0,那么x的值是,化简的结果为,若,则 的值为等内容,欢迎下载使用。
2023-2024学年江苏省南京市南航附中数学八年级第一学期期末检测模拟试题含答案: 这是一份2023-2024学年江苏省南京市南航附中数学八年级第一学期期末检测模拟试题含答案,共8页。试卷主要包含了如图所示,给出下列4个命题等内容,欢迎下载使用。