江苏省连云港市海州区四校2024-2025学年九年级数学第一学期开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一辆汽车以50的速度行驶,行驶的路程与行驶的时间之间的关系式为,其中变量是( )
A.速度与路程B.速度与时间C.路程与时间D.速度
2、(4分)甲安装队为 A小区安装 台空调,乙安装队为 B小区安装 台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装 台,设乙队每天安装 台,根据题意,下面所列方程中正确的是
A.B.C.D.
3、(4分)的算术平方根是( )
A.B.﹣C.D.±
4、(4分)若关于的一元二次方程的常数项为0,则的值等于( )
A.1B.3C.1或3D.0
5、(4分)如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD 边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有( )
A.4次B.3次C.2次D.1次
6、(4分)将直线向上平移1个单位长度,得到的一次函数解析式为
A.B.C.D.
7、(4分)在平面内,下列图案中,能通过图平移得到的是( )
A.B.C.D.
8、(4分)下面计算正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系xOy中,一次函数与反比例函数的图象交于点,.结合图象,直接写出关于x的不等式的解集____
10、(4分)小李掷一枚均匀的硬币次,出现的结果如下:正、反、正、反、反、反、正、正、反、反、反、正,则出现“反面朝上”的频率为______.
11、(4分)平面直角坐标系中,点M(-3,-4)到x轴的距离为______________________.
12、(4分)因式分解:___________.
13、(4分)比较大小:_____1.(填“>”、“=”或“<”)
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE
求证:(1)△ABF≌△DCE;
(2)四边形ABCD是矩形.
15、(8分)如图,在中,,是中线,点是的中点,连接,且,
(1)求证:四边形是菱形;
(2)若,直接写出四边形的面积.
16、(8分)如图,在中,,,,.
求的周长;
判断是否是直角三角形,并说明理由.
17、(10分)在△ABC中,∠C=30°,AC=4cm,AB=3cm,求BC的长.
18、(10分)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点F的坐标为(-1,5),求点E的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知正方形的边长为1,如果将向量的运算结果记为向量,那么向量的长度为______
20、(4分)如图,是内的一点,,点分别在的两边上,周长的最小值是____.
21、(4分)对于实数x我们规定[x]表示不大于x的最大整数,例如[1.8]=1,[7]=7,[﹣5]=﹣5,[﹣2.9]=﹣3,若[]=﹣2,则x的取值范围是_____.
22、(4分)如图,中,AB的垂直平分线DE分别交AB、BC于E、D,若,则的度数为__________
23、(4分)一个n边形的内角和为1080°,则n=________.
二、解答题(本大题共3个小题,共30分)
24、(8分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.
根据以上统计图,解答下列问题:
(1)求出本次接受调查的市民共有多少人?
(2)扇形统计图中,扇形E的圆心角度数是_________;
(3)请补全条形统计图;
(4)若该市约有80万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.
25、(10分)银隆百货大楼服装柜在销售中发现:某品牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.
(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?
(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.
26、(12分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长1个单位长度的正方形).
(1)将沿轴方向向左平移6个单位,画出平移后得到的.
(2)将绕着点顺时针旋转,画出旋转后得到的;直接写出点的坐标.
(3)作出关于原点成中心对称的,并直接写出的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
在函数中,给一个变量x一个值,另一个变量y就有对应的值,则x是自变量,y是因变量,据此即可判断.
【详解】
解:由题意的:s=50t,路程随时间的变化而变化,则行驶时间是自变量,行驶路程是因变量;
故选:C.
此题主要考查了自变量和因变量,正确理解自变量与因变量的定义,是需要熟记的内容.
2、D
【解析】
根据两队同时开工且恰好同时完工可得两队所用时间相等.由题意得甲队每天安装(x+2)台,所以甲安装66台所有时间为,乙队所用时间为,利用时间相等建立方程.
【详解】
乙队用的天数为:,甲队用的天数为:,
则所列方程为:=
故选D.
3、C
【解析】
直接利用算术平方根的定义得出答案.
【详解】
的算术平方根是:.
故选C.
此题主要考查了算术平方根,正确把握定义是解题关键.
4、B
【解析】
根据一元二次方程的定义及常数项为0列出不等式和方程,求出m的值即可.
【详解】
解:根据题意,得:,
解得:m=1.
故选:B.
考查了一元二次方程的定义和一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
5、B
【解析】
试题解析:∵四边形ABCD 是平行四边形,
∴BC=AD=12,AD∥BC,
∵四边形PDQB是平行四边形,
∴PD=BQ,
∵P的速度是1cm/秒,
∴两点运动的时间为12÷1=12s,
∴Q运动的路程为12×4=48cm,
∴在BC上运动的次数为48÷12=4次,
第一次PD=QB时,12-t=12-4t,解得t=0,不合题意,舍去;
第二次PD=QB时,Q从B到C的过程中,12-t=4t-12,解得t=4.8;
第三次PD=QB时,Q运动一个来回后从C到B,12-t=31-4t,解得t=8;
第四次PD=QB时,Q在BC上运动3次后从B到C,12-t=4t-31,解得t=9.1.
∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,
故选:B.
考点:平行四边形的判定与性质
6、A
【解析】
根据函数解析式“上加下减”的原则进行解答即可.
【详解】
解:由“上加下减”的原则可知,
将直线向上平移1个单位长度,得到的一次函数解析式为.
故选:A.
本题考查一次函数的图象与几何变换,熟知函数解析式“上加下减”的原则是解答此题的关键.
7、B
【解析】
把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移.
【详解】
解:观察四个选项,可知B选项为原图经过平移所得,形状和方向均未发生改变.
故选择B.
理解平移只改变位置,不改变图片的形状、大小和方向.
8、B
【解析】
分析:A.根据合并二次根式的法则即可判定;
B.根据二次根式的除法法则即可判定;
C.根据二次根式的乘法法则即可判定;
D.根据二次根式的性质即可判定.
详解:A.不是同类二次根式,不能合并.故选项错误;
B.÷==1.故选项正确;
C..故选项错误;
D.=2. 故选项错误.
故选B.
点睛:本题考查了二次根式的计算,要掌握各运算法则.二次根式的加减运算,只有同类二次根式才能合并;乘法法则;除法法则.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x<-2或0
利用图像即可求出不等式的解集.
【详解】
结合图像可知:当x<-2或0
故答案为x<-2或0
10、
【解析】
根据题意可知“反面朝上”一共出现7次,再利用概率公式进行计算即可
【详解】
“反面朝上”一共出现7次,
则出现“反面朝上”的频率为
此题考查频率,解题关键在于掌握频率的计算方法
11、1
【解析】
根据点到x轴的距离是其纵坐标的绝对值解答即可.
【详解】
点P(﹣3,-1)到x轴的距离是其纵坐标的绝对值,所以点P(﹣3,-1)到x轴的距离为1.
故答案为:1.
本题考查了点的坐标的几何意义,明确点的坐标与其到x、y轴的距离的关系是解答本题的关键.
12、
【解析】
直接提取公因式2,进行分解因式即可.
【详解】
2(a-b).
故答案为:2(a-b).
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
13、>.
【解析】
【分析】先求出1=,再比较即可.
【详解】∵12=9<10,
∴>1,
故答案为:>.
【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)见解析.
【解析】
(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.
(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.
【详解】
(1)∵BE=CF,BF=BE+EF,CE=CF+EF,
∴BF=CE.
∵四边形ABCD是平行四边形,
∴AB=DC.
在△ABF和△DCE中,
∵AB=DC,BF=CE,AF=DE,
∴△ABF≌△DCE.
(2)∵△ABF≌△DCE,
∴∠B=∠C.
∵四边形ABCD是平行四边形,
∴AB∥CD.
∴∠B+∠C=180°.
∴∠B=∠C=90°.
∴平行四边形ABCD是矩形.
15、(1)见解析;(2).
【解析】
(1)先证明四边形BDEF是平行四边形,由等腰三角形三线合一得,再由直角三角形斜边上的中线性质得出,即可得出四边形BDEF是菱形;
(2)由勾股定理得出,得出的面积,由题意得出的面积的面积的面积,菱形BDEF的面积的面积,得出四边形BDEF的面积的面积.
【详解】
(1)证明:,,
四边形BDEF是平行四边形,
,AE是中线,
,
,
点D是AB的中点,
,
四边形BDEF是菱形;
(2)解:,,,
,
的面积,
点D是AB的中点,
的面积的面积的面积,
菱形BDEF的面积的面积,
四边形BDEF的面积的面积.
本题考查了菱形的判定与性质、等腰三角形的性质、直角三角形斜边上的中线性质、勾股定理等知识;熟练掌握菱形的判定与性质是解题的关键.
16、(1)54;(2)不是直角三角形,理由见解析.
【解析】
(1)在和中,利用勾股定理分别求得AB与AC的长即可;
(2)利用勾股定理的逆定理进行判断即可.
【详解】
解:,
.
在和中,
根据勾股定理得,,
又,,,
,
;
不是直角三角形.理由:
,
,
不是直角三角形.
本题主要考查勾股定理及其逆定理,解此题的关键在于熟练掌握其知识点.
17、
【解析】
首先过点A作AD⊥BC,根据Rt△ADC和Rt△ABD的勾股定理分别求出CD和BD的长度,从而得出BC的长度
【详解】
过点A作AD⊥BC,则△ADC和△ABD为直角三角形
∵∠C=30° AC=4cm ∴AD=2cm CD=cm
根据Rt△ABD的勾股定理可得:BD=cm
∴BC=BD+CD=()cm
本题考查直角三角形的勾股定理,解题关键在于能够构造出直角三角形.
18、点E坐标(2,3)
【解析】
过点E作AE⊥y轴于点A,过点F作FP⊥AE于点P,由“AAS”可证△AOE≌△PFE,可得AE=PF,PE=AO,即可求点E坐标.
【详解】
解:如图,过点E作AE⊥y轴于点A,过点F作FP⊥AE于点P,
∵四边形是正方形
∴EF=OE,∠FEO=90°
∵∠FEP+∠PEO=90°,∠PEO+∠AOE=90°
∴∠AOE=∠FEP,且EF=OE,∠EPF=∠OAE=90°
∴△AOE≌△PFE(AAS)
∴AE=PF,PE=AO,
∵点F(-1,5)
∴AO+PF=5,PE-AE=1
∴AO=3=PE,AE=2=PF
∴点E坐标(2,3).
本题考查了正方形的性质,全等三角形的判定和性质,坐标与图形的性质,证明△AOE≌△PFE是本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
利用向量的三角形法则直接求得答案.
【详解】
如图:
∵-==且||=1,
∴||=1.
故答案为:1.
此题考查了平面向量,属于基础题,熟记三角形法则即可解答.
20、
【解析】
根据轴对称图形的性质,作出P关于OA、OB的对称点M、N,连接OM、ON、MN,根据两点之间线段最短得到MN即为△PQR周长的最小值,然后证明△MON为等腰直角三角形,利用勾股定理求出MN即可.
【详解】
解:分别作P关于OA、OB的对称点M、N,连接OM、ON,连接MN交OA、OB交于Q、R,则△PQR符合条件且△PQR的周长等于MN,
由轴对称的性质可得:OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,
∴∠MON=∠MOP+∠NOP=2∠AOB=90°,
∴△MON为等腰直角三角形.
∴MN=,
所以△PQR周长的最小值为,
故答案为:.
此题考查了轴对称最短路径问题,等腰直角三角形的判定和性质以及勾股定理,根据题意构造出对称点,转化为直角三角形的问题是解题的关键.
21、﹣9≤x<﹣1
【解析】
根据题意可以列出相应的不等式,解不等式求出x的取值范围即可得答案.
【详解】
∵[x]表示不大于x的最大整数,[]=﹣2,
∴﹣2≤<﹣1,
解得:﹣9≤x<﹣1.
故答案为:﹣9≤x<﹣1.
本题考查了一元一次不等式组和一元一次不等式组的整数解的应用,能根据题意得出关于x的不等式组是解题关键.
22、80°.
【解析】
根据线段的垂直平分线的性质得到DB=DA,得到∠DAB=∠B=40°,根据三角形的外角性质计算即可.
【详解】
解:∵DE是线段AB的垂直平分线,
∴DB=DA,
∴∠DAB=∠B=40°,
∴∠ADC=∠DAB+∠B=80°.
故答案为:80°.
本题考查线段的垂直平分线的性质、三角形的外角性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
23、1
【解析】
直接根据内角和公式计算即可求解.
【详解】
(n﹣2)•110°=1010°,解得n=1.
故答案为1.
主要考查了多边形的内角和公式.多边形内角和公式:.
二、解答题(本大题共3个小题,共30分)
24、(1)2000(2)(3)500(4)32万
【解析】
(1)由A组人数及其所占百分比可得总人数;
(2)用360°乘以对应比例即可得;
(3)用总人数乘以D所占百分比即可;
(4)利用样本估计总体思想求解可得.
【详解】
(1)本次接受调查的市民共有:(人);
(2)扇形E角的度数为:
(3)D选项的人数为:
补全条形统计图
(4)估计赞同“选育无絮杨品种,并推广种植”的人数为 (万人)
故估计赞同“选育无絮杨品种,并推广种植”的人数为32万人
本题考查了扇形统计图、条形统计图,观察统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小,条形统计图直接反映部分的具体数据.
25、(1)每件童装应定价80元.(2)当降价15元,即以85元销售时,最高利润值达1250元.
【解析】
(1)首先设每件降价x元,则每件实际盈利为(100-60-x)元,销售量为(20+2x)件,根据每件盈利×销售量=每天盈利,列方程求解,求出x的值,并根据题意“扩大销售量,减少内存”选择正确的定价.
(2)设每天销售这种童装利润为y,利用上述关系式列出函数关系式,利用配方法即可求出何时有最高利润以及最高利润
【详解】
(1)设每件童装应降价x元,由题意得:
(100−60−x)(20+2x)=1200,
解得:x1=10,x2=20,
因要减少库存,故取 x=20,
答:每件童装应定价80元.
(2)1200不是最高利润,
y=(100−60−x)(20+2x)
=−2x 2+60x+800
=−2(x−15)2+1250
故当降价15元,即以85元销售时,最高利润值达1250元.
此题考查了二次函数的应用以及一元二次方程的应用,利用函数关系和基本的数量关系列方程求解是本题的关键.
26、(1)见解析;(2)见解析;;(3)见解析;.
【解析】
(1)图形的平移时,我们只需要把三个顶点ABC,按照点的平移方式,平移得到新点,然后顺次连接各点即为平移后的.
(2)首先只需要画出B,C旋转后的对应点,,然后顺次连接各点即为旋转过后的,然后写出坐标即可;
(3)首先依次画出点ABC关于原点成中心对称的对应点,然后顺次连接各点即可得到,然后写出坐标即可.
【详解】
解:(1)如图所示;
(2)如图所示,由图可知;
(3)如图所示,由图可知.
本题的解题关键是:根据图形平移、旋转、中心对称的性质,找到对应点位置,顺次连接对应点即是变化后的图形;这里需要注意的是运用点的平移时,横坐标满足“左(移)减右(移)加”,纵坐标满足“下(移)减上(移)加;旋转时找准旋转中心和旋转角度,再进行画图.
题号
一
二
三
四
五
总分
得分
江苏省连云港海州区七校联考2024年九年级数学第一学期开学联考模拟试题【含答案】: 这是一份江苏省连云港海州区七校联考2024年九年级数学第一学期开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省连云港市海州区四校九年级数学第一学期开学达标测试试题【含答案】: 这是一份2024年江苏省连云港市海州区四校九年级数学第一学期开学达标测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省连云港市沙河中学数学九年级第一学期开学调研模拟试题【含答案】: 这是一份2024-2025学年江苏省连云港市沙河中学数学九年级第一学期开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。