江苏省淮安市洪泽区教育联盟学校2025届数学九年级第一学期开学考试试题【含答案】
展开
这是一份江苏省淮安市洪泽区教育联盟学校2025届数学九年级第一学期开学考试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列式子是分式的是( )
A.B.C.D.
2、(4分)在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( )
A.=-5B.=+5C.=8x-5D.=8x+5
3、(4分)判断下列三条线段a,b,c组成的三角形不是直角三角形的是( )
A.a=4,b=5,c=3B.a=7,b=25,c=24
C.a=40,b=50,c=60D.a=5,b=12,c=13
4、(4分)如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是( )
A.B.C.D.
5、(4分)下列根式中属于最简二次根式的是( )
A.B.C.D.
6、(4分)使分式有意义的x的取值范围是( )
A.x≥1B.x≤1C.x>1D.x≠1
7、(4分)把多项式ax3﹣2ax2+ax分解因式,结果正确的是( )
A.ax(x2﹣2x)B.ax2(x﹣2)
C.ax(x+1)(x﹣1)D.ax(x﹣1)2
8、(4分)关于x的分式方程=1的解为正数,则字母a的取值范围为( )
A.a≥﹣1B.a>﹣1C.a≤﹣1D.a<﹣1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,一次函数y=kx+b的图象与x轴的交点坐标为(1,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=1;④不等式kx+b>0的解集是x>1.其中说法正确的有_________(把你认为说法正确的序号都填上).
10、(4分)如图,已知矩形ABCD,AB=8,AD=4,E为CD边上一点,CE=5,P点从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE,设点P运动的时间为t秒,则当t的值为______时,∠PAE为等腰三角形?
11、(4分)已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为 .
12、(4分)在英文单词 believe 中,字母“e”出现的频率是_______.
13、(4分)平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为1,且△AOH的面积为1.
(1)求正比例函数的解析式;
(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.
15、(8分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连接CD,BE.
(1)当点D是AB的中点时,四边形BECD是什么特殊四边形?说明你的理由.
(2)在(1)的条件下,当∠A=__________°时,四边形BECD是正方形.
16、(8分)如图,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=1.
(1)求反比例函数解析式;
(2)求点C的坐标.
17、(10分)解方程:x2-3x=5x-1
18、(10分)某校八年级学生全部参加“禁毒知识竞赛”,从中抽取了部分学生,将他们的竞赛成绩进行统计后分为,,,四个等次,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题:
(1)抽取了_______名学生成绩;
(2)扇形统计图中等级所在扇形的圆心角度数是_________;
(3)为估算全校八年级“禁毒知识竞赛”平均分,现将、、、依次记作分、分、分、分,请估算该校八年级知识竞赛平均分.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图所示,在四边形中,,分别是的中点,,则的长是___________.
20、(4分)若代数式在实数范围内有意义,则x的取值范围是_______.
21、(4分)已知一次函数,当时,对应的函数的取值范围是,的值为__.
22、(4分)计算:____.
23、(4分)菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?
25、(10分)某市在今年对全市6000名八年级学生进行了一次视力抽样调查,并根据统计数据,制作了的统计表和如图所示统计图.
请根据图表信息回答下列问题:
(1)求抽样调查的人数;
(2)______,______,______;
(3)补全频数分布直方图;
(4)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是多少?根据上述信息估计该市今年八年级的学生视力正常的学生大约有多少人?
26、(12分)已知直线 y=kx+b(k≠0)过点 F(0,1),与抛物线 相交于B、C 两点
(1)如图 1,当点 C 的横坐标为 1 时,求直线 BC 的解析式;
(2)在(1)的条件下,点 M 是直线 BC 上一动点,过点 M 作 y 轴的平行线,与抛物线交于点 D, 是否存在这样的点 M,使得以 M、D、O、F 为顶点的四边形为平行四边形?若存在,求出点 M 的坐标;若不存在,请说明理由;
(3)如图 2,设 B(m,n)(m<0),过点 E(0,-1)的直线 l∥x 轴,BR⊥l 于 R,CS⊥l 于 S,连接 FR、FS.试判断△ RFS 的形状,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据分母中含有字母的式子是分式,可得答案.
【详解】
解:是分式,
故选:B.
本题考查了分式的定义,分母中含有字母的式子是分式,否则是整式.
2、B
【解析】
根据题意知:8x的倒数+5=3x的倒数,据此列出方程即可.
【详解】
根据题意,可列方程:=+5,
故选B.
本题考查了由实际问题抽象出分式方程,关键是读懂题意,找到3x的倒数与8x的倒数间的等量关系,列出方程.
3、C
【解析】
根据勾股定理的逆定理对各选项进行逐一分析即可.
【详解】
解:A、∵32+42=52,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;
B、∵72+242=252,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;
C、∵402+502≠602,∴由线段a,b,c组成的三角形不是直角三角形,故本选项正确;
D、∵52+122=132,∴由线段a,b,c组成的三角形不是直角三角形,故本选项错误.
故选:C.
本题考查的是勾股定理及勾股定理的逆定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
4、A
【解析】
解:∵AE平分∠BAD,
∴∠DAE=∠BAE;
又∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠BEA=∠DAE=∠BAE,
∴AB=BE=6,
∵BG⊥AE,垂足为G,
∴AE=2AG.
在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,
∴AG==2,
∴AE=2AG=4;
∴S△ABE=AE•BG=.
∵BE=6,BC=AD=9,
∴CE=BC﹣BE=9﹣6=3,
∴BE:CE=6:3=2:1,
∵AB∥FC,
∴△ABE∽△FCE,
∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=.
故选A.
本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.
5、A
【解析】
根据最简二次根式的定义选择即可.
【详解】
、是最简二次根式,故本选项正确;
、不是最简二次根式,故本选项错误;
、不是最简二次根式,故本选项错误;
、不是最简二次根式,故本选项错误.
故选:.
本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.
6、D
【解析】
要使分式有意义,则必须分母不等于0.
【详解】
使分式有意义,则x-1≠0,所以x≠1.
故选D
本题考核知识点:分式有意义的条件. 解题关键点:记住要使分式有意义,则必须分母不等于0.
7、D
【解析】
先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.
【详解】
原式=ax(x2﹣2x+1)=ax(x﹣1)2,
故选D.
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
8、B
【解析】
解:分式方程去分母得:2x-a=x+1,解得:x=a+1.
根据题意得:a+1>3且a+1+1≠3,解得:a>-1且a≠-2.
即字母a的取值范围为a>-1.故选B.
点睛:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为3.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、①②③
【解析】
①因为一次函数的图象经过二、四象限,所以y随x的增大而减小,故本项正确;
②因为一次函数的图象与y轴的交点在正半轴上,所以b>0,故本项正确;
③因为一次函数的图象与x轴的交点为(1,0),所以当y=0时,x=1,即关于x的方程kx+b=0的解为x=1,故本项正确;
④由图象可得不等式kx+b>0的解集是x<1,故本项是错误的.故正确的有①②③.
10、3或2或.
【解析】
根据矩形的性质求出∠D=90°,AB=CD=8,求出DE后根据勾股定理求出AE;过E作EM⊥AB于M,过P作PQ⊥CD于Q,求出AM=DE=3,当EP=EA时,AP=2DE=6,即可求出t;当AP=AE=5时,求出BP=3,即可求出t;当PE=PA时,则x2=(x-3)2+42,求出x,即可求出t.
【详解】
∵四边形ABCD是长方形,
∴∠D=90°,AB=CD=8,
∵CE=5,
∴DE=3,
在Rt△ADE中,∠D=90°,AD=4,DE=3,由勾股定理得:AE==5;
过E作EM⊥AB于M,过P作PQ⊥CD于Q,
则AM=DE=3,
若△PAE是等腰三角形,则有三种可能:
当EP=EA时,AP=2DE=6,
所以t==2;
当AP=AE=5时,BP=8−5=3,
所以t=3÷1=3;
当PE=PA时,设PA=PE=x,BP=8−x,则EQ=5−(8−x)=x−3,
则x2=(x−3)2+42,
解得:x=,
则t=(8−)÷1=,
综上所述t=3或2或时,△PAE为等腰三角形.
故答案为:3或2或.
此题考查矩形的性质,等腰三角形的判定,解题关键在于利用勾股定理进行计算.
11、y=-x+1
【解析】
由函数的图象与直线y=-x+1平行,可得斜率,将点(8,2)代入即可人求解.
解:设所求一次函数的解析式为 y=kx+b,
∵函数的图象与直线y=-x+1平行,
∴k=-1,
又过点(8,2),有2=-1×8+b,
解得b=1,
∴一次函数的解析式为y=-x+1,
故答案为y=-x+1.
12、
【解析】
先求出英文单词believe总的字母个数和e的个数,再根据握频率=进行计算即可.
【详解】
∵英文单词believe共有7个字母,其中有3个e,
∴字母“e”出现的频率是;
故答案为:.
此题考查频数与频率,解题关键在于掌握频率的计算公式即可.
13、14cm或16cm
【解析】
试题分析:根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,然后分别讨论BE=2cm,CE=3cm或BE=3cm,CE=2cm,继而求得答案.
解:如图,∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵AE为角平分线,
∴∠DAE=∠BAE,
∴∠AEB=∠BAE,
∴AB=BE,
∴①当AB=BE=2cm,CE=3cm时,
则周长为14cm;
②当AB=BE=3cm时,CE=2cm,
则周长为16cm.
故答案为14cm或16cm.
考点:平行四边形的性质.
三、解答题(本大题共5个小题,共48分)
14、(1)y=-x;(2)点P的坐标为(5,0)或(﹣5,0).
【解析】
试题分析:(1)根据题意求得点A的坐标,然后利用待定系数法求得正比例函数的解析式;
(2)利用三角形的面积公式求得OP=5,然后根据坐标与图形的性质求得点P的坐标.
试题解析:(1)∵点A的横坐标为1,且△AOH的面积为1
∴点A的纵坐标为﹣2,点A的坐标为(1,﹣2),
∵正比例函数y=kx经过点A,
∴1k=﹣2解得k=-,
∴正比例函数的解析式是y=-x;
(2)∵△AOP的面积为5,点A的坐标为(1,﹣2),
∴OP=5,
∴点P的坐标为(5,0)或(﹣5,0).
点睛:本题考查了正比例函数图象的性质、待定系数法求正比例函数的解析式.注意点P的坐标有两个.
15、 (1)菱形,理由见解析;(2)1.
【解析】
①先证出BD=CE,得出四边形BECD是平行四边形,再由直角三角形斜边上的中线性质得出CD=AB=BD,即可得出四边形BECD是菱形;
②当∠A=1°时,△ABC是等腰直角三角形,由等腰三角形的性质得出CD⊥AB,即可得出四边形BECD是正方形.
【详解】
解:(1)四边形BECD是菱形,理由如下:
∵D为AB中点,
∴AD=BD,
∵CE=AD,
∴BD=CE,
∵BD∥CE,
∴四边形BECD是平行四边形,
∵∠ACB=90°,D为AB中点,
∴CD=AB=BD,
∴四边形BECD是菱形;
故答案为:菱形;
(2)当∠A=1°时,四边形BECD是正方形;理由如下:
∵∠ACB=90°,
当∠A=1°时,△ABC是等腰直角三角形,
∵D为AB的中点,
∴CD⊥AB,
∴∠CDB=90°,
∴四边形BECD是正方形;
故答案为:1.
本题是四边形综合题目,考查了平行四边形的判定与性质、正方形的判定、菱形的判定、直角三角形斜边上的中线性质;熟练掌握平行四边形的判定与性质,并能进行推理论证是解决问题的关键.
16、(1)反比例函数解析式为y=;(2)C点坐标为(2,1)
【解析】
(1)由S△BOD=1可得BD的长,从而可得D的坐标,然后代入反比例函数解析式可求得k,从而得解析式为y=;
(2)由已知可确定A点坐标,再由待定系数法求出直线AB的解析式为y=2x,然后解方程组即可得到C点坐标.
【详解】
(1)∵∠ABO=90°,OB=1,S△BOD=1,
∴OB×BD=1,解得BD=2,
∴D(1,2)
将D(1,2)代入y=,
得2=,
∴k=8,
∴反比例函数解析式为y=;
(2)∵∠ABO=90°,OB=1,AB=8,
∴A点坐标为(1,8),
设直线OA的解析式为y=kx,
把A(1,8)代入得1k=8,解得k=2,
∴直线AB的解析式为y=2x,
解方程组得或,
∴C点坐标为(2,1).
17、x=4±
【解析】
根据一元二次方程的解法即可求出答案.
【详解】
解:∵x2-3x=5x-1,
∴x2-8x=-1
∴x2-8x+16=15,
∴(x-4)2=15,
∴x=4±;
此题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题是属于基础题型.
18、 (1)600;(2) ;(3)67.2分
【解析】
(1)共抽取学生252÷42%=600(名);
(2)扇形统计图中D等级所在扇形的圆心角度数是360°×=7.2°;
(3)估计禁毒知识竞赛平均分: ×(288×80+252×60+48×40+12×20)=67.2.
【详解】
解:(1)252÷42%=600(名),
故答案为600;
(2)扇形统计图中D等级所在扇形的圆心角度数是360°×=7.2°,
故答案为7.2°;
(3)×(288×80+252×60+48×40+12×20)=67.2,
答:估计禁毒知识竞赛平均分为67.2分.
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据中位线定理和已知,易证明△PMN是等腰三角形,根据等腰三角形的性质和已知条件即可求出∠PMN的度数为30°,通过构造直角三角形求出MN.
【详解】
解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,
∴PN,PM分别是△CDB与△DAB的中位线,
∴PM=AB=2,PN=DC=2,PM∥AB,PN∥DC,
∵AB=CD,
∴PM=PN,
∴△PMN是等腰三角形,
∵PM∥AB,PN∥DC,
∴∠MPD=∠ABD=20°,∠BPN=∠BDC=80°,
∴∠MPN=∠MPD+∠NPD=20°+(180-80)°=120°,
∴∠PMN==30°.
过P点作PH⊥MN,交MN于点H.
∵HQ⊥MN,
∴HQ平分∠MHN,NH=HM.
∵MP=2,∠PMN=30°,
∴MH=PM•cs60°=,
∴MN=2MH=2.
本题考查了三角形中位线定理及等腰三角形的判定和性质、30°直角三角形性质,解题时要善于根据已知信息,确定应用的知识.
20、
【解析】
先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
解:∵在实数范围内有意义,
∴x-1≥2,
解得x≥1.
故答案为x≥1.
本题考查的是二次根式有意义的条件,即被开方数大于等于2.
21、4.
【解析】
根据题意判断函数是减函数,再利用特殊点代入解答即可.
【详解】
当时,随的增大而减小,即一次函数为减函数,
当时,,当时,,
代入一次函数解析式得:,
解得,
故答案为:4.
本题考查求一次函数的解析式,掌握求解析式的待定系数法是解题关键.
22、1
【解析】
根据二次根式的乘法运算法则进行计算即可.
【详解】
解:.
故答案为:1.
本题考查了二次根式的乘法运算,掌握基本运算法则是解题的关键.
23、5
【解析】
根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.
【详解】
如图,
∵四边形ABCD是菱形,
∴OAAC=4,OBBD=3,AC⊥BD,
∴AB5
故答案为:5
本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记菱形的各种性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)A型:100元,B型:150元;(2)①y=-50x+15000;②34台A型电脑和66台B型,利润最大,最大利润是1元
【解析】
(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;然后根据销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元列出方程组,然后求解即可;
(2)①根据总利润等于两种电脑的利润之和列式整理即可得解;
②根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可.
【详解】
解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;
根据题意得,
解得.
答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;
(2)①根据题意得,y=100x+150(100-x),
即y=-50x+15000;
②据题意得,100-x≤2x,
解得x≥33,
∵y=-50x+15000,
∴y随x的增大而减小,
∵x为正整数,
∴当x=34时,y取最大值,则100-x=66,
此时最大利润是y=-50×34+15000=1.
即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是1元.
本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.
25、(1)抽样调查的人数是200人;(2)40,60,30;(3)补图见解析;(4)该市2016年中考的初中毕业生视力正常的学生大约有2400人.
【解析】
(1)先根据4.0≤x
相关试卷
这是一份江苏省淮安市洪泽区教育联盟学校2025届九上数学开学调研模拟试题【含答案】,共27页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份江苏省淮安市洪泽区2024年九年级数学第一学期开学复习检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省淮安市洪泽区教育联盟学校2023-2024学年数学八上期末达标测试试题含答案,共7页。试卷主要包含了若3n+3n+3n=,则n=,已知,的值为等内容,欢迎下载使用。