江苏省淮安市洪泽湖初级中学2025届数学九年级第一学期开学检测模拟试题【含答案】
展开这是一份江苏省淮安市洪泽湖初级中学2025届数学九年级第一学期开学检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,一次图数y=﹣x+3与一次函数y=2x+m图象交于点(2,n),则关于x的不等式组的解集为( )
A.x>﹣2B.x<3C.﹣2<x<3D.0<x<3
2、(4分)如图,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CE,CF,EF,则以下四个结论一定正确的是()
①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE
A.只有①②B.只有①②③
C.只有③④D.①②③④
3、(4分)若y+1与x-2成正比例,当时,;则当时,的值是( )
A.-2B.-1C.0D.1
4、(4分)四边形对角线、交于,若、,则四边形是( )
A.平行四边形B.等腰梯形C.矩形D.以上都不对
5、(4分)下列式子没有意义的是( )
A.B.C.D.
6、(4分)如图所示,函数与在同一坐标系中,图象只能是下图中的( )
A.B.C.D.
7、(4分)将方程化成一元二次方程的一般形式,正确的是( ).
A.B.C.D.
8、(4分)下列英文大写正体字母中,既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在菱形ABCD中,AC交BD于P,E为BC上一点,AE交BD于F,若AB=AE,,则下列结论:①AF=AP;②AE=FD;③BE=AF.正确的是______(填序号).
10、(4分)若反比例函数y=的图象在二、四象限,则常数a的值可以是_____.(写出一个即可)
11、(4分)某公司测试自动驾驶技术,发现移动中汽车“”通信中每个数据包传输的测量精度大约为0.0000018秒,请将数据0.0000018用科学计数法表示为__________.
12、(4分)张老师对同学们的打字能力进行测试,他将全班同学分成五组.经统计,这五个小组平均每分钟打字个数如下:100,80,x,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是 .
13、(4分)如图,在▱ABCD中,∠A=65°,则∠D=____°.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.
(1)判断△BEC的形状,并说明理由?
(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;
(3)求四边形EFPH的面积.
15、(8分)分解因式:.
16、(8分)如图是两个全等的直角三角形(和)摆放成的图形,其中,,点B落在DE边上,AB与CD相交于点F.若,求这两个直角三角形重叠部分的周长.
17、(10分)经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.
(1)当每吨售价是240元时,此时的月销售量是多少吨.
(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?
18、(10分)为了解某校八年级学生每周平均课外阅读时间的情况,随机抽查了该校八年级部分学生,对其每周平均课外阅读时间进行统计,根据统计数据绘制成如图的两幅尚不完整的统计图:
(1)本次共抽取了多少人?并请将图1的条形图补充完整;
(2)这组数据的众数是________;求出这组数据的平均数;
(3)若全校有1500人,请你估计每周平均课外阅读时间为3小时的学生多少人?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,菱形ABCD的对角线长分别为a、b,以菱形ABCD各边的中点为顶点作矩形,然后再以矩形的中点为顶点作菱形,……,如此下去,得到四边形A2019B2019C2019D2019的面积用含a,b的代数式表示为___.
20、(4分)若,则=_____.
21、(4分)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF,若△ABC的周长为10,则△DEF的周长为_______________.
22、(4分)如图在平面直角坐标系中,,,以为边作正方形,则点的坐标为___________.
23、(4分)一元二次方程化成一般式为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系中,已知一次函数的图像与轴交于点,与轴交于点
求两点的坐标
在给定的平面直角坐标系中画出该函数的图象;
根据图像回答:当时,的取值范围是 .
25、(10分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.
(1)当m=1,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
26、(12分)如图,在□ABCD中,∠B=60°.
(1)作∠A的角平分线与边BC交于点E(用尺规作图,保留作图痕迹,不要求写作法);
(2)求证:△ABE是等边三角形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先求出直线y=﹣x+1与x轴的交点坐标,然后根据函数特征,写出在x轴上,直线y=2x+m在直线y=﹣x+1上方所对应的自变量的范围.
【详解】
解:直线y=﹣x+1与x轴的交点坐标为(1,0),
所以不等式组的解集为﹣2<x<1.
故选:C.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
2、B
【解析】
根据题意,结合图形,对选项一一求证,判定正确选项.
【详解】
解:在□ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,
∵△ABE、△ADF都是等边三角形,
∴AD=DF,AB=EB,∠ADF=∠ABE=60°,
∴DF=BC,CD=BC,
∴∠CDF=360°-∠ADC-60°=300°-∠ADC,
∠EBC=360°-∠ABC-60°=300°-∠ABC,
∴∠CDF=∠EBC,
在△CDF和△EBC中,
DF=BC,∠CDF=∠EBC,CD=EB,
∴△CDF≌△EBC(SAS),故①正确;
在▱ABCD中,∠DAB=180°-∠ADC,
∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,
∴∠CDF=∠EAF,故②正确;
同理可证△CDF≌△EAF,
∴EF=CF,
∵△CDF≌△EBC,
∴CE=CF,
∴EC=CF=EF,
∴△ECF是等边三角形,故③正确;
当CG⊥AE时,∵△ABE是等边三角形,
∴∠ABG=30°,
∴∠ABC=180°-30°=150°,
∵∠ABC=150°无法求出,故④错误;
综上所述,正确的结论有①②③.
故选B.
本题考查了全等三角形的判定、等边三角形的判定和性质、平行线的性质等知识,综合性强,考查学生综合运用数学知识的能力.
3、C
【解析】
由y+1与x-2成正比例可设y+1=k(x-2),再把时,代入求出k的值,把代入解析式解答即可.
【详解】
解:∵y+1与x-2成正比例,
∴设y+1=k(x-2),
∵时,,
∴1+1=k(1-2),解得k=-1,
∴y+1=-(x-2),即y=1-x;
把代入y=1-1=1.
故选:C.
本题考查待定系数法求一次函数的解析式,先根据y+1与x-2成正比例设出一此函数的解析式是解题的关键.
4、D
【解析】
由四边形ABCD对角线AC、BD交于O,若AO=OD、BO=OC,易得AC=BD,AD∥BC,然后分别从AD=BC与AD≠BC去分析求解,即可求得答案.
【详解】
∵AO=OD、BO=OC,
∴AC=BD,∠OAD=∠ODA=,∠OBC=∠OCB=,
∵∠AOD=∠BOC,
∴∠OAD=∠OCB,
∴AD∥BC,
①若AD=BC,则四边形ABCD是平行四边形,
∵AC=BD,
∴平行四边形ABCD是矩形;
②若AD≠BC,
则四边形ABCD是梯形,
∵AC=BD,
∴四边形ABCD是等腰梯形.
故答案选D.
本题考查了平行四边形的性质和矩形与等腰梯形的判定,解题的关键是熟练的掌握平行四边形的性质和矩形与等腰梯形的判定.
5、A
【解析】
试题分析:A.没有意义,故A符合题意;
B.有意义,故B不符合题意;
C.有意义,故C不符合题意;
D.有意义,故D不符合题意;
故选A.
考点:二次根式有意义的条件.
6、B
【解析】
根据反比例函数和一次函数的图像特点解答即可.
【详解】
∵k<0
∴反比例函数的图像只能在二、四象限,故排除答案A,D
又一次函数的解析式为:(k<0)
∴一次函数的图像过二、三、四象限
故答案选择B.
本题考查的是反比例函数和一次函数的图像特征,反比例函数,当k>0时,函数图像过一、三象限,当k<0时,函数图像过二、四象限;一次函数y=kx+b,当k>0,b>0时,函数图像过一、二、三象限,当k>0,b<0时,函数图像过一、三、四象限,当k<0,b>0时,函数图像过一、二、四象限,当k<0,b<0时,函数图像过二、三、四象限.
7、B
【解析】
通过移项把方程4x2+5x=81化成一元二次方程的一般形式.
【详解】
方程4x2+5x=81化成一元二次方程的一般形式是4x2+5x-81=1.
故选B.
此题主要考查了一元二次方程的一般形式,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=1(a≠1).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.
8、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、是轴对称图形,也是中心对称图形,故此选项正确;
D、不是轴对称图形,是中心对称图形,故此选项错误.
故选:C.
此题考查中心对称图形与轴对称图形的概念,解题关键在于掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、②③
【解析】
根据菱形的性质可知AC⊥BD,所以在Rt△AFP中,AF一定大于AP,从而判断①;设∠BAE=x,然后根据等腰三角形两底角相等表示出∠ABE,再根据菱形的邻角互补求出∠ABE,根据三角形内角和定理列出方程,求出x的值,求出∠BFE和∠BE的度数,从而判断②③.
【详解】
解:在菱形ABCD中,AC⊥BD,
∴在Rt△AFP中,AF一定大于AP,故①错误;
∵四边形ABCD是菱形,
∴AD∥BC,
∴∠ABE+∠BAE+∠EAD=180°,
设∠BAE=x°,
则∠EAD=2x°,∠ABE=180°-x°-2x°,
∵AB=AE,∠BAE=x°,
∴∠ABE=∠AEB=180°-x°-2x°,
由三角形内角和定理得:x+180-x-2x+180-x-2x=180,
解得:x=36,
即∠BAE=36°,
∠BAE=180°-36°-2×36°=70°,
∵四边形ABCD是菱形,
∴∠BAD=∠CBD=∠ABE=36°,
∴∠BFE=∠ABD+∠BAE=36°+36°=72°,
∴∠BEF=180°-36°-72°=72°,
∴BE=BF=AF.故③正确
∵∠AFD=∠BFE=72°,∠EAD=2x°=72°
∴∠AFD=∠EAD
∴AD=FD
又∵AD=AB=AE
∴AE=FD,故②正确
∴正确的有②③
故答案为:②③
本题考查了菱形的性质,等腰三角形的性质,熟记各性质并列出关于∠BAE的方程是解题的关键,注意:菱形的对边平行,菱形的对角线平分一组对角.
10、2(答案不唯一).
【解析】
由反比例函数y=的图象在二、四象限,可知a-3<0,据此可求出a的取值范围.
【详解】
∵反比例函数y=的图象在二、四象限,
∴a-3<0,
∴a<3,
∴a可以取2.
故答案为2.
本题考查了反比例函数的图像与性质,对于反比例函数(k是常数,k≠0),当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当 k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.
11、
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
.
故答案为:.
本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
12、1.
【解析】
∵100,80,x,1,1,这组数据的众数与平均数相等,
∴这组数据的众数只能是1,否则,x=80或x=100时,出现两个众数,无法与平均数相等.
∴(100+80+x+1+1)÷5=1,解得,x=1.
∵当x=1时,数据为80,1,1,1,100,
∴中位数是1.
13、115
【解析】
根据平行四边形的对边平行即可求解.
【详解】
依题意知AB∥CD
∴∠D=180°-∠A=115°.
此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的对边平行.
三、解答题(本大题共5个小题,共48分)
14、(1)△BEC是直角三角形,理由见解析(2)四边形EFPH为矩形,理由见解析(3)
【解析】(1)△BEC是直角三角形,理由略
(2)四边形EFPH为矩形
证明:在矩形ABCD中,∠ABC=∠BCD=900
∴PA=, PD=2 ∵AD=BC=5
∴AP2+PD2=25=AD2 ∴∠APD=900 (3分)
同理∠BEC=900
∵DE=BP ∴四边形BPDE为平行四边形
∴BE∥PD (4分)
∴∠EHP=∠APD=900,又∵∠BEC=900
∴四边形EFPH为矩形 (5分)
(3)在RT△PCD中∠FfPD
∴PD·CF=PC·CD ∴CF==
∴EF=CE-CF=-= (7分)
∵PF==
∴S四边形EFPH=EF·PF=
(1)根据矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出即可;
(2)根据矩形的性质和平行四边形的判定,推出平行四边形DEBP和AECP,推出EH∥FP,EF∥HP,推出平行四边形EFPH,根据矩形的判定推出即可;
(2)根据三角形的面积公式求出CF,求出EF,根据勾股定理求出PF,根据面积公式求出即可.
15、.
【解析】
先提公因式(x-y),再运用平方差公式分解因式.
【详解】
,
,
,
.
本题考核知识点:因式分解.解题关键点:熟练掌握因式分解基本方法.
16、
【解析】
根据全等三角形的性质得出BC=EC,∠ABC=∠E=60°,求出△BCE是等边三角形,求出∠DCB=30°,∠BFC=90°,解直角三角形求出BF和CF,即可求出答案.
【详解】
解:如图
∵,,
∴,,
∴是等边三角形,
∴,
又∵,
∴,
又∵,在中,
∴,,
∴的周长是.
本题考查了全等三角形的性质,含30°角的直角三角形的性质,等边三角形的性质和判定,求出BF和CF的长是解此题的关键.
17、(1)60;(2)将售价定为200元时销量最大.
【解析】
(1)因为每吨售价每下降10元时,月销售量就会增加7.5吨,可求出当每吨售价是240元时,此时的月销售量是多少吨.
(2)设当售价定为每吨x元时,根据当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元,当每吨售价每下降10元时,月销售量就会增加7.5吨,且该经销店计划月利润为9000元而且尽可能地扩大销售量,以9000元做为等量关系可列出方程求解.
【详解】
(1)45+×7.5=60;
(2)设售价每吨为x元,
根据题意列方程为:(x - 100)(45+×7.5)=9000,
化简得x2 - 420x + 44000=0,
解得x1=200,x2=220(舍去),
因此,将售价定为200元时销量最大.
本题考查理解题意能力,关键是找出降价10元,却多销售7.5吨的关系,从而列方程求解.
18、(1)60人,图见解析;(2)众数是3,平均数是2.75;(3)500人.
【解析】
(1)根据统计图中的数据可以求得本次共抽取了学生多少人,阅读3小时的学生有多少人,从而可以将条形统计图补充完整;
(2)根据统计图中的数据可以求得众数和平均数;
(3)根据统计图中的数据可以求得课外阅读时间为3小时的学生有多少人.
【详解】
解:(1)由图2知阅读时间为2小时的扇形图圆形角为90°,即阅读时间为2小时的概率为,再根据图1可知阅读2小时的人数为15人,所以本次共抽取了15÷ =60名学生,阅读3小时的学生有:60-10-15-10-5=20(名),
补充完整的条形统计图如下图所示;
(2)由条形统计图可得,
这组数据的众数是3,
这组数据的平均数是:;
(3)1500× =500(人),
答:课外阅读时间为3小时的学生有500人.
本题考查条形统计图、扇形统计图、用样本估计总体、加权平均数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据三角形中位线定理,逐步得到小长方形的面积,得到规律即可求解.
【详解】
∵菱形ABCD的对角线长分别为a、b,AC⊥BD,
∴S四边形ABCD=
∵以菱形ABCD各边的中点为顶点作矩形,根据中位线的性质可知
S四边形A1B1C1D1=S四边形ABCD=
…
则S四边形AnBnCnDn=S四边形ABCD=
故四边形A2019B2019C2019D2019的面积用含a,b的代数式表示为.
故填:.
此题主要考查特殊平行四边形的性质,解题的关键是根据题意找到规律进行求解.
20、
【解析】
设=m,则有x=3m,y=4m,z=5m,代入原式即可得出答案.
【详解】
解:设=m,
∴x=3m,y=4m,z=5m,
代入原式得:.
故答案为.
本题考查了代数式求值和等比例的性质,掌握并灵活运用等比例性质是解答本题的关键.
21、1
【解析】
解:根据三角形的中位线定理可得DE=AC,EF=AB,DF=BC
所以△DEF的周长为△ABC的周长的一半,即△DEF的周长为1
故答案为:1.
本题考查三角形的中位线定理.
22、或
【解析】
当点C在AB上方时,过点C作CE⊥y轴于点E,易证△AOB≌△BEC(AAS),根据全等三角形的性质可得BE=AO=4,EC=OB=2,从而得到点C的坐标为(2,6),同理可得当点C在AB下方时,点C的坐标为:(-2,-2).
【详解】
解:如图所示,当点C在AB上方时,过点C作CE⊥y轴于点E,
∵,,四边形为正方形,
∴∠BEC=∠AOB=90°,BC=AB,
∵∠BCE+∠EBC=90°,∠OBA+∠EBC=90°,
∴∠BCE=∠OBA,
∴△AOB≌△BEC(AAS),
∴BE=AO=4,EC=OB=2,
∴OE=OB+BE=6,
∴此时点C的坐标为:(2,6),
同理可得当点C在AB下方时,点C的坐标为:(-2,-2),
综上所述,点C的坐标为:或
故答案为:或.
本题主要考查坐标与图形以及三角形全等的判定和性质,注意分情况讨论,不要漏解.
23、
【解析】
直接去括号,然后移项,即可得到答案.
【详解】
解:∵,
∴,
∴,
故答案为:.
本题考查了一元二次方程的一般式,解题的关键是熟练掌握一元二次方程的一般式.
二、解答题(本大题共3个小题,共30分)
24、(1);(1)见解析;(3)
【解析】
(1)分别令y=0,x=0求解即可;
(1)根据两点确定一条直线过点A和点B作一条直线即为函数的图象;
(3)结合图象可知y>0时x的取值范围即为函数图象在x轴上方部分对应的自变量的取值范围.
【详解】
解:(1)令y=0,则x=1,
令x=0,则y=1,
所以点A的坐标为(1,0),
点B的坐标为(0,1);
(1)如图:
(3)当y>0时,x的取值范围是x<1
故答案为:x<1.
本题考查了一次函数图象与坐标轴的交点问题,一次函数与一元一次不等式,画出一次函数的图象,数形结合是解题的关键.
25、(1)①;②四边形是菱形,理由见解析;(2)四边形能是正方形,理由见解析,m+n=32.
【解析】
(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
(2)先确定出B(1,),D(1,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论.
【详解】
(1)①如图1,
,
反比例函数为,
当时,,
,
当时,
,
,
,
设直线的解析式为,
,
,
直线的解析式为;
②四边形是菱形,
理由如下:如图2,
由①知,,
轴,
,
点是线段的中点,
,
当时,由得,,
由得,,
,,
,
,
四边形为平行四边形,
,
四边形是菱形;
(2)四边形能是正方形,
理由:当四边形是正方形,记,的交点为,
,
当时,,
,,
,
,,,
,
,
.
此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.
26、(1)见解析;(1)见解析
【解析】
(1)作∠A的角平分线与边BC交于点E即可;
(1)根据平行四边形的性质即可证明△ABE是等边三角形.
【详解】
解:(1)如图
(1)如图,∵四边形是平行四边形,
∴,
∴∠1=∠1.
∵AE平分∠BAD,
∴∠1=∠3,
∴∠1=∠3,
∴AB=EB.
∵∠B=60°,
∴△ABE是等边三角形.
本题考查了作图-基本作图、等边三角形的判定、平行四边形的性质,解决本题的关键是掌握以上知识.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份江苏省淮安市清江浦中学2025届数学九年级第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省淮安市泾口镇初级中学2024-2025学年九年级数学第一学期开学联考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年江苏省淮安市洪泽湖初级中学八上数学期末检测模拟试题含答案,共7页。试卷主要包含了下列长度的线段能组成三角形的是,下列二次拫式中,最简二次根式是等内容,欢迎下载使用。