|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省海安市八校2024-2025学年九上数学开学达标测试试题【含答案】
    立即下载
    加入资料篮
    江苏省海安市八校2024-2025学年九上数学开学达标测试试题【含答案】01
    江苏省海安市八校2024-2025学年九上数学开学达标测试试题【含答案】02
    江苏省海安市八校2024-2025学年九上数学开学达标测试试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省海安市八校2024-2025学年九上数学开学达标测试试题【含答案】

    展开
    这是一份江苏省海安市八校2024-2025学年九上数学开学达标测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,两地被池塘隔开,小明先在直线外选一点,然后测量出,的中点,并测出的长为.由此,他可以知道、间的距离为( )
    A.B.C.D.
    2、(4分)一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是( )
    A.2B.3C.5D.7
    3、(4分)已知直角三角形的两直角边长分别为5和12,则此直角三角形斜边上的中线长为()
    A.B.6C.13D.
    4、(4分)已知一次函数y=kx+b,-3A.2B.3或0C.4D.2成0
    5、(4分)函数y=x+m与y=(m≠0)在同一坐标系内的图象可以是( )
    A.B.
    C.D.
    6、(4分)如图,矩形中,是边的中点,是边上一点,,,,则线段的长为( )
    A.B.C.D.
    7、(4分)如图,函数y=kx和y=﹣x+4的图象相交于点A(3,m)则不等式kx≥﹣x+4的解集为( )
    A.x≥3 B.x≤3 C.x≤2 D.x≥2
    8、(4分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角是( )。
    A.60°B.90°C.120°D.45°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)以下是小明化简分式的过程.
    解:原式




    (1)小明的解答过程在第_______步开始出错;
    (2)请你帮助小明写出正确的解答过程,并计算当时分式的值.
    10、(4分)已知实数满足,则以的值为两边长的等腰三角形的周长是_________________.
    11、(4分)如图在中,,,的平分线交于,交的延长线于,则的值等于_________.
    12、(4分)如图,先画一个边长为1的正方形,以其对角线为边画第二个正方形,再以第二个正方形的对角线为边画第三个正方形,…,如此反复下去,那么第n个正方形的对角线长为_____.
    13、(4分)如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在△ABC中,∠ACB=90°,且DE是△ABC的中位线.延长ED到F,使DF=ED,连接FC,FB.回答下列问题:
    (1)试说明四边形BECF是菱形.
    (2)当的大小满足什么条件时,菱形BECF是正方形?请回答并证明你的结论.

    15、(8分)(已知:如图1,矩形OACB的顶点A,B的坐标分别是(6,0)、(0,10),点D是y轴上一点且坐标为(0,2),点P从点A出发以每秒1个单位长度的速度沿线段AC﹣CB方向运动,到达点B时运动停止.
    (1)设点P运动时间为t,△BPD的面积为S,求S与t之间的函数关系式;
    (2)当点P运动到线段CB上时(如图2),将矩形OACB沿OP折叠,顶点B恰好落在边AC上点B′位置,求此时点P坐标;
    (3)在点P运动过程中,是否存在△BPD为等腰三角形的情况?若存在,求出点P坐标;若不存在,请说明理由.
    16、(8分)如图,将矩形沿折叠,使点恰好落在边的中点上,点落在处,交于点.若,,求线段的长.
    17、(10分)如图,在菱形ABCD中,对角线AC,相交于点O,cm,cm,E,F分别是AB,BC的中点,点P是对角线AC上的一个动点,设cm,cm,cm
    小明根据学习函数的经验,分别对这两种函数随自变量的变化而变化的情况进行了探究,下面是小明探究过程,请补充完整:
    (1)画函数的图象
    ①按下表自变量的值进行取点、画图、测量,得到了与x的几组对应值:
    ②在所给坐标系中描出补全后的表中的各对应值为坐标的点,画出函数的图象;
    (2)画函数的图象
    在同一坐标系中,画出函数的图象;
    (3)根据画出的函数的图象、函数的图象,解决问题
    ①函数的最小值是________________;
    ②函数的图象与函数的图象的交点表示的含义是________________;
    ③若,AP的长约为________________cm
    18、(10分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.
    (1)求与的函数关系式,并写出的取值范围;
    (2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
    (3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分).若2m= 3n,那么m︰n= .
    20、(4分)如图,已知点A(1,a)与点B(b,1)在反比例函数y=(x>0)图象上,点P(m,0)是x轴上的任意一点,若△PAB的面积为2,此时m的值是______.
    21、(4分)分解因式:5x3﹣10x2=_______.
    22、(4分)计算:=___________
    23、(4分)如图,在中,,,点D在边上,若以、为边,以为对角线,作,则对角线的最小值为_______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.
    25、(10分)如图,是的中线,,交于点,是的中点,连接.
    (1)求证:四边形是平行四边形;
    (2)若四边形的面积为,请直接写出图中所有面积是的三角形.
    26、(12分)某公司欲招聘一名公务人员,对甲、乙两位应试者进行了面试和笔试,他们的成绩(百分制)如表所示:
    (1)如果公司认为面试和笔试同等重要,从他们的成绩看,谁将被录取?
    (2)如果公司认为作为公务人员面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据三角形中位线定理解答.
    【详解】
    解:∵点M,N分别是AC,BC的中点,
    ∴AB=2MN=13(m),
    故选:C.
    本题考查了三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是关键.
    2、C
    【解析】
    分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据.根据定义即可求出答案.
    详解:∵众数为5, ∴x=5, ∴这组数据为:2,3,3,5,5,5,7, ∴中位数为5, 故选C.
    点睛:本题主要考查的是众数和中位数的定义,属于基础题型.理解他们的定义是解题的关键.
    3、D
    【解析】
    已知直角三角形的两直角边长分别为5和12,根据勾股定理求得斜边为13,根据直角三角形斜边上的中线等于斜边的一半,得此直角三角形斜边上的中线长为,故选D.
    4、D
    【解析】
    本题分情况讨论①x=-3时对应y=-1,x=1时对应y=3;②x=-3时对应y=3,x=1时对应y=-1;将每种情况的两组数代入即可得出答案.
    【详解】
    ①将x=-3,y=-1代入得:-1=-3k+b,将x=1,y=3代入得:3=k+b,
    解得:k=1,b=2;函数解析式为y=x+2,经检验验符合题意;
    ②将x=-3,y=3,代入得:3=-3k+b,将x=1,y=-1代入得:-1=k+b,
    解得:k=-1,b=1,函数解析式为y=-x,经检验符合题意;
    综上可得b=2或1.
    故选D.
    本题考查待定系数法求函数解析式,注意本题需分两种情况,不要漏解.
    5、C
    【解析】
    根据一次函数y=x+m的图象必过一、三象限,可判断出选项B、D不符合题意,然后针对A、C选项,先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.
    【详解】
    一次函数y=x+m中,k=1>0,所以函数图象必过一、三象限,观察可知B、D选项不符合题意;
    A、由函数y=x+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故错误;
    C、由函数y=x+m的图象可知m>0,由函数y=的图象可知m>0,正确,
    故选C.
    本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.
    6、A
    【解析】
    延长﹑交于点,先证得得出,,再由勾股定理得,然后设,根据勾股定理列出方程得解.
    【详解】
    解:延长﹑交于点,
    则,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴由勾股定理得,
    设,
    在和中,
    则,
    解得.
    故选:A
    本题考查了勾股定理的应用,添加辅助线构造全等三角形,运用勾股定理列出方程是解本题的关键.
    7、A
    【解析】
    将点A(m,3)代入y=−x+4得,−m+4=3,
    解得,m=2,
    所以点A的坐标为(2,3),
    由图可知,不等式kx⩾−x+4的解集为x⩾2.
    故选D
    本题考查了一次函数和不等式(组)的关系以及数形结合思想的应用.解决此类问题的关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.
    8、A
    【解析】
    首先设平行四边形中两个内角的度数分别是x°,2x°,由平行四边形的邻角互补,即可得方程x+2x=180,继而求得答案.
    【详解】
    设平行四边形中两个内角的度数分别是x°,2x°,
    则x+2x=180,
    解得:x=60,
    ∴其中较小的内角是:60°.
    故选A.
    此题考查平行四边形的性质,解题关键在于利用平行四边形的邻角互补.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、 (1) ②;(2)2
    【解析】
    根据分式的混合运算法则进行计算即可.
    【详解】
    (1)②,应该是.
    (2)解:原式=

    当时,
    此题考查分式的混合运算,解题关键在于掌握运算法则.
    10、19
    【解析】
    先根据非负数的性质求得x、y的值,然后再根据等腰三角形的性质以及三角形三边关系进行讨论即可得.
    【详解】
    根据题意得,x-3=0,y-8=0,
    解得x=3,y=8,
    ①3是腰长时,三角形的三边分别为3、3、8,
    ∵3+3<8,
    ∴不能组成三角形,
    ②3是底边时,三角形的三边分别为3、8、8,
    能组成三角形,周长=3+8+8=19,
    所以,三角形的周长为19,
    故答案为:19.
    本题了非负数的性质,等腰三角形的性质,三角形三边的关系,涉及了绝对值的非负性,二次根式的非负性,等腰三角形的性质等,求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.
    11、4
    【解析】
    根据平行四边形的性质得到∠F=∠DCF,根据角平分线的性质得到BF=BC=8,从而解得答案.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,AD=BC=8,CD=AB=6,
    ∴∠F=∠DCF,
    ∵∠C平分线为CF,
    ∴∠FCB=∠DCF,
    ∴∠F=∠FCB,
    ∴BF=BC=8,
    同理:DE=CD=6,
    ∴AF=BF-AB=2,AE=AD-DE=2,
    ∴AE+AF=4;
    本题考查平行四边形的性质和角平分线的性质,解题的关键是掌握平行四边形的性质和角平分线的性质.
    12、()n.
    【解析】
    第1个正方形的边长是1,对角线长为;第二个正方形的边长为,对角线长为()2=2,第3个正方形的对角线长为()3;得出规律,即可得出结果.
    【详解】
    第1个正方形的边长是1,对角线长为;
    第二个正方形的边长为,对角线长为()2=2
    第3个正方形的边长是2,对角线长为2=()3;…,
    ∴第n个正方形的对角线长为()n;
    故答案为()n.
    本题主要考查了正方形的性质、勾股定理;求出第一个、第二个、第三个正方形的对角线长,得出规律是解决问题的关键.
    13、1
    【解析】
    由平行四边形的性质得出BC=AD=6,由直角三角形斜边上的中线性质即可得出结果.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴BC=AD=6,
    ∵E为BC的中点,AC⊥AB,
    ∴AE=BC=1,
    故答案为:1.
    本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)当∠A=45°时,菱形BECF是正方形.
    【解析】
    分析:(1)根据已知条件发现:可以证明四边形的对角线互相垂直平分即是一个菱形.
    (2)菱形要是一个正方形,则根据正方形的对角线平分一组对角,即∠BEF=45°,则∠A=45°.
    详(1)证明:∵DE是△ABC的中位线,
    ∴DE∥AC.
    又∵∠ACB=90°,
    ∴EF⊥BC.
    又∵BD=CD,DF=ED,
    ∴四边形BECF是菱形.
    (2)解:要使菱形BECF是正方形
    则有BE⊥CE
    ∵E是△ABC的边AB的中点
    ∴当△CBA是等腰三角形时,满足条件
    ∵∠BCA=90°
    ∴△CBA是等腰直角三角形
    ∴当∠A=45°时,菱形BECF是正方形.
    点睛:(1)熟悉菱形的判定方法;(2)探索性的试题,可以从若要满足结论,则需具备什么条件进行分析.
    15、(1)S=(2) (3)存在,(6,6)或 ,
    【解析】
    (1)当P在AC段时,△BPD的底BD与高为固定值,求出此时面积;当P在BC段时,底边BD为固定值,用t表示出高,即可列出S与t的关系式;
    (2)当点B的对应点B′恰好落在AC边上时,设P(m,10),则PB=PB′=m,由勾股定理得m2=22+(6-m)2,即可求出此时P坐标;
    (3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.
    【详解】
    解:(1)∵A,B的坐标分别是(6,0)、(0,10),
    ∴OA=6,OB=10,
    当点P在线段AC上时,OD=2,BD=OB-OD=10-2=8,高为6,
    ∴S=×8×6=24;
    当点P在线段BC上时,BD=8,高为6+10-t=16-t,
    ∴S=×8×(16-t)=-4t+64;
    ∴S与t之间的函数关系式为:;
    (2)设P(m,10),则PB=PB′=m,如图1,
    ∵OB′=OB=10,OA=6,
    ∴AB′==8,
    ∴B′C=10-8=2,
    ∵PC=6-m,
    ∴m2=22+(6-m)2,
    解得m=
    则此时点P的坐标是(,10);
    (3)存在,理由为:
    若△BDP为等腰三角形,分三种情况考虑:如图2,
    ①当BD=BP1=OB-OD=10-2=8,
    在Rt△BCP1中,BP1=8,BC=6,
    根据勾股定理得:CP1=,
    ∴AP1=10−,
    即P1(6,10-),
    ②当BP2=DP2时,此时P2(6,6);
    ③当DB=DP3=8时,
    在Rt△DEP3中,DE=6,
    根据勾股定理得:P3E=,
    ∴AP3=AE+EP3=+2,
    即P3(6,+2),
    综上,满足题意的P坐标为(6,6)或(6,10-),(6,+2).
    本题是四边形综合题,考查了矩形的性质,坐标与图形性质,等腰三角形的性质,勾股定理等知识,注意分类讨论思想和方程思想的运用.
    16、.
    【解析】
    先根据勾股定理求出BF,再根据△AMC′∽△BC′F求出AM即可.
    【详解】
    解:根据折叠的性质可知,FC=FC′,∠C=∠FC′M=90°,
    设BF=x,则FC=FC′=9-x,
    ∵BF2+BC′2=FC′2,
    ∴x2+32=(9-x)2,
    解得:x=4,即BF=4,
    ∵∠FC′M=90°,
    ∴∠AC′M+∠BC′F=90°,
    又∵∠BFC′+BC′F=90°,
    ∴∠AC′M=∠BFC′,
    ∵∠A=∠B=90°,
    ∴△AMC′∽△BC′F,

    ∵BC′=AC′=3,
    ∴AM=.
    本题主要考查了折叠的性质,矩形的性质,相似三角形的判定与性质,能够发现△AMC′∽△BC′F是解决问题的关键.
    17、(1)①见解析;②见解析;(2)见解析;(3)①y1的最小值是0.5;②AP的长为2cm;③x=2.1.
    【解析】
    (1)①由表格得点(x,y1)即可;
    ②先由①描点,再用光滑曲线顺次连接各点,即可得出函数图象;利用数形结合,根据当x=0.5时,得出y1值,填入表格即可;
    (2)过点F作FM⊥AC于M,由菱形的性质各三角形中位线性质求得FM=1,PM=3-x,所以y2=,再利用描点法画出y2的图象即可;
    (3)①利用数形结合,由函数y1的图象求解即可;
    ②过点F作FM⊥AC于M,
    可利用几何背景意义求解;
    ③因PC=AC-AP=4-x,由PE=PC,则y1=4-x,利用图象求解即可.
    【详解】
    解:(1)①如下表:图象如图所示:
    ②过点F作FM⊥AC于M,如图,
    ∵菱形ABCD,
    ∴AC⊥BD,
    ∴FM∥BD,
    ∵F是BC的中点,
    ∴M是OC的中点,
    ∴FM=1,OM=1,
    ∴PM=3-x,
    ∴PF2=PM2+MF2,
    ∴y2=,
    利用描点法作出图象,如图所示:
    (3)如上图;
    ①由图象可得:函数y1的最小值是0.5;
    ②答案不唯一,如,如:用几何背景意义可知:函数y1的图象与函数y2的图象的交点表示的含义是:当PE=PF=1.12cm时,由图象可得:AP的长为2cm;
    ③∵PC=AC-AP=4-x,
    ∵PE=PC,
    ∴y1=4-x,
    利用图象可得:x=2.1.
    故答案为①0.5;②当PE=PF=1.12cm时,AP的长为2cm;③2.1.
    本题考查动点函数的函数图象,菱形的性质,以及勾股定理的应用.熟练掌握用描点法作函数图象是解题关键.
    18、(1)();(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚.
    【解析】
    【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x的取值范围;
    (2)根据利润=每千克的利润×销售量,可得关于x的二次函数,利用二次函数的性质即可求得;
    (3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.
    【详解】(1)设 ,将点(10,200)、(15,150)分别代入,
    则,解得 ,
    ∴,
    ∵蜜柚销售不会亏本,∴,
    又,∴ ,∴,
    ∴ ;
    (2) 设利润为元,

    =
    =,
    ∴ 当 时, 最大为1210,
    ∴ 定价为19元时,利润最大,最大利润是1210元;
    (3) 当 时,,
    110×40=4400<4800,
    ∴不能销售完这批蜜柚.
    【点睛】 本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3︰2
    【解析】
    根据比例的性质将式子变形即可.
    【详解】


    故答案为: 3︰2
    点睛:此题考查比例的知识
    20、﹣1或3
    【解析】
    把点A(1,a)与点B(b,1)代入反比例函数y=(x>0),求出A,B坐标,延长AB交x轴于点C,如图2,设直线AB的解析式为y=mx+n,求出点C的坐标,用割补法求出PC的值,结合点C的坐标即可.
    【详解】
    解:∵点A(1,a)与点B(b,1)在反比例函数y=(x>0)图象上,
    ∴a=2,b=2,
    ∴点A(1,2)与点B(2,1),
    延长AB交x轴于点C,如图2,
    设直线AB的解析式为y=mx+n,
    则有,
    解得,
    ∴直线AB的解析式为y=﹣x+1.
    ∵点C是直线y=﹣x+1与x轴的交点,
    ∴点C的坐标为(1,0),OC=1,
    ∵S△PAB=2,
    ∴S△PAB=S△PAC﹣S△PBC=×PC×2﹣×PC×1=PC=2,
    ∴PC=2.
    ∵C(1,0),P(m,0),
    ∴|m﹣1|=2,
    ∴m=﹣1或3,
    故答案为:﹣1或3.
    本题考查的是反比例函数,熟练掌握反比例函数图像上点的特征是解题的关键.
    21、5x2(x-2)
    【解析】
    5x3-10x2=2x2(x-2)
    22、6
    【解析】
    先取绝对值符号、计算负整数指数幂和零指数幂,再计算加减可得;
    【详解】
    解:原式=1+1+4=6
    故答案为:6
    此题主要考查了实数运算,绝对值,负整数指数幂和零指数幂,正确化简各数是解题关键.
    23、1
    【解析】
    由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值,由三角形中位线定理求出OD,即可得出DE的最小值.
    【详解】
    解:∵,,
    根据勾股定理得,
    ∵四边形是平行四边形,

    ∴当取最小值时,线段最短,即时最短,
    是的中位线,


    故答案为:1.
    本题考查了平行四边形的性质,勾股定理以及垂线段最短,此题难度适中,注意掌握数形结合思想的应用.
    二、解答题(本大题共3个小题,共30分)
    24、36平方米
    【解析】
    连接AC,根据勾股定理,求得AC,再根据勾股定理的逆定理,判断三角形ACD是直角三角形.这块草坪的面积等于两个直角三角形的面积之和.
    【详解】
    连接AC,如图,∵AB⊥BC,∴∠ABC=90°.
    ∵AB=3米,BC=4米,∴AC=5米.
    ∵CD=12米,DA=13米,∴CD2+AC2=144+25=169=132=DA2,∴∠ACD=90°,∴△ACD为直角三角形,∴草坪的面积等于=S△ABC+S△ACD=3×4÷2+5×12÷2=6+30=36(米2).
    本题考查了勾股定理和勾股定理的逆定理.
    25、(1)见解析;(2),,,
    【解析】
    (1)首先证明△AFE≌△DFB可得AE=BD,进而可证明AE=CD,再由AE∥BC可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE是平行四边形;
    (2)根据面积公式解答即可.
    【详解】
    证明:∵AD是△ABC的中线,
    ∴BD=CD,
    ∵AE∥BC,
    ∴∠AEF=∠DBF,
    在△AFE和△DFB中,

    ∴△AFE≌△DFB(AAS),
    ∴AE=BD,
    ∴AE=CD,
    ∵AE∥BC,
    ∴四边形ADCE是平行四边形;
    (2)∵四边形ABCE的面积为S,
    ∵BD=DC,
    ∴四边形ABCE的面积可以分成三部分,即△ABD的面积+△ADC的面积+△AEC的面积=S,
    ∴面积是S的三角形有△ABD,△ACD,△ACE,△ABE.
    此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
    26、 (1)甲将被录取;(2)乙将被录取.
    【解析】
    (1)求得面试和笔试的平均成绩即可得到结论;
    (2)根据题意先算出甲、乙两位应聘者的加权平均数,再进行比较,即可得出答案.
    【详解】
    解:(1)==89(分),
    ==87.5(分),
    因为>,
    所以认为面试和笔试成绩同等重要,从他们的成绩看,甲将被录取;
    (2)甲的平均成绩为:(86×6+90×4)÷10=87.6(分),
    乙的平均成绩为:(92×6+83×4)÷10=88.4(分),
    因为乙的平均分数较高,
    所以乙将被录取.
    此题考查了加权平均数的计算公式,解题的关键是:计算平均数时按6和4的权进行计算.
    题号





    总分
    得分
    批阅人
    x/cm
    0
    0.5
    1
    1.5
    2
    2.5
    3
    3.5
    4
    /cm
    1.12
    0.5
    0.71
    1.12
    1.58
    2.06
    2.55
    3.04
    应试者
    面试
    笔试

    86
    90

    92
    83
    x/cm
    0
    0.5
    1
    1.5
    2
    2.5
    3
    3.5
    4
    y1/cm
    1.12
    0.71
    0.5
    0.71
    1.12
    1.58
    2.06
    2.55
    3.04
    相关试卷

    江苏省海安八校联考2024-2025学年九上数学开学复习检测模拟试题【含答案】: 这是一份江苏省海安八校联考2024-2025学年九上数学开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省海安2024-2025学年九上数学开学学业水平测试试题【含答案】: 这是一份江苏省海安2024-2025学年九上数学开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省海安市八校联考数学九上开学联考试题【含答案】: 这是一份2024年江苏省海安市八校联考数学九上开学联考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map