2024-2025学年江苏省扬州市仪征市大仪中学九上数学开学达标测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在△ABC中,AB=AC=10,BC=12,点D是BC上一点,DE∥AC,DF∥AB,则△BED与△DFC的周长的和为( )
A.34B.32C.22D.20
2、(4分)用配方法解一元二次方程x2-8x+2=0,此方程可化为的正确形式是( ).
A.(x-4)2=14B.(x-4)2=18C.(x+4)2=14D.(x+4)2=18
3、(4分)如图,在中,,,,是边上的动点,,,则的最小值为( )
A.B.C.5D.7
4、(4分)如图,矩形ABCD中,AB=8,BC=4,把矩形ABCD沿过点A的直线AE折叠,点D落在矩形ABCD内部的点D′处,则CD′的最小值是( )
A.4B.C.D.
5、(4分)如图,在四边形中,,分别是的中点,则四边形一定是( )
A.平行四边形B.矩形C.菱形D.正方形
6、(4分)如图,正比例函数的图像与反比例函数的图像交于A、B两点.点C在轴负半轴上,AC=AO,△ACO的面积为8. 则的值为()
A.-4B.﹣8C.4D.8
7、(4分)以下列各组数为一个三角形的三边长,能构成直角三角形的是( ).
A.2,3,4B.4,6,5C.14,13,12D.7,25,24
8、(4分)下列运算,正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知关于的一元二次方程有一个非零实数根,则的值为_____.
10、(4分)如图,正方形的两边、分别在轴、轴上,点在边上,以为中心,把旋转,则旋转后点的对应点的坐标是________.
11、(4分)如图,正方形ABCD中,AB=6,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为_____。
12、(4分)(2011山东烟台,17,4分)如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是 .
13、(4分)已知点,,,在平面内找一点,使得以、、、为顶点的四边形为平行四边形,则点的坐标为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值: [其中,]
15、(8分)在平行四边形中,的垂直平分线分别交于两点,交于点,试判断四边形的形状,并说明理由.
16、(8分)现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.
(1)如图1,若点O与点A重合,则OM与ON的数量关系是 ;
(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?
(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)
17、(10分)解不等式组:
请结合题意填空,完成本题的解答.
(1)解不等式①,得 ;
(2)解不等式②,得 ;
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式组的解集为 .
18、(10分)小明家准备给边长为6m的正方形客厅用黑色和白色两种瓷砖铺设,如图所示:①黑色瓷砖区域Ⅰ:位于四个角的边长相同的小正方形及宽度相等的回字型边框(阴影部分),②白色瓷砖区域Ⅱ:四个全等的长方形及客厅中心的正方形(空白部分).设四个角上的小正方形的边长为x(m).
(1)当x=0.8时,若客厅中心的正方形瓷砖铺设的面积为16m2,求回字型黑色边框的宽度;
(2)若客厅中心的正方形边长为4m,白色瓷砖区域Ⅱ的总面积为26m2,求x的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图是一张三角形纸片,其中,从纸片上裁出一矩形,要求裁出的矩形的四个顶点都在三角形的边上,其面积为,则该矩形周长的最小值=________
20、(4分)如果点A(1,m)在直线y=-2x+1上,那么m=___________.
21、(4分)如图,直线过点A(0,2),且与直线交于点P(1,m),则不等式组> > -2的解集是_________
22、(4分)已知,,,若,则可以取的值为______.
23、(4分)方程组的解是
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.
25、(10分)一列火车以的速度匀速前进.
(1)求行驶路程单位:关于行驶时间单位:的函数解析式;
(2)在平面直角坐标系中画出该函数的图象.
26、(12分)已知一次函数y=kx+b的图象与y=3x的图象平行,且经过点(﹣1,1),求这个一次函数的关系式,并求当x=5时,对应函数y的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
首先根据两组对边互相平行的四边形是平行四边形判定出四边形AEDF是平行四边形,进而得到DF=AE,然后证明DE=BE,即可得到DE+DF=AB,从而得解.
【详解】
解:∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,
∴DF=AE,
又∵DE∥AC,
∴∠C=∠EDB,
又∵AB=AC,
∴∠B=∠C,
∴∠B=∠EDB,
∴DE=BE,
∴DF+DE=AE+BE,
∴△BED与△DFC的周长的和=△ABC的周长=10+10+12=32,
故选:B.
本题主要考查了平行四边形的判定与性质,等腰三角形的判定,关键是掌握平行四边形对边平行且相等,两组对边分别平行的四边形是平行四边形.
2、A
【解析】
依据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方求解可得.
【详解】
解:x2-8x+2=0,
x2-8x=-2,
x2-8x+16=-2+16,
(x-4)2=14,
故选A.
移项,配方,即可得出选项.
此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用, 能够正确配方是解此题的关键.
3、B
【解析】
先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.
【详解】
如图,连接PC.
∵在△ABC中,AC=6,BC=8,AB=10,
∴AB2=AC2+BC2,
∴∠C=90°.
又∵PE⊥AC于点E,PF⊥BC于点F.
∴∠CEP=∠CFP=90°,
∴四边形PECF是矩形.
∴PC=EF.
∴当PC最小时,EF也最小,
即当PC⊥AB时,PC最小,
∵BC•AC=AB•PC,即PC=,
∴线段EF长的最小值为.
故选B.
本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PC⊥AB时,PC取最小值是解答此题的关键.
4、C
【解析】
根据翻折的性质和当点D'在对角线AC上时CD′最小解答即可.
【详解】
解:当点D'在对角线AC上时CD′最小,
∵矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D处,
∴AD=AD'=BC=2,
在Rt△ABC中,AC===4,
∴CD'=AC-AD'=4-4,
故选:C.
本题考查了翻折变换、矩形的性质、勾股定理,利用勾股定理求出AC的长度是解题的关键.
5、B
【解析】
根据三角形中位线定理,平行四边形的判定定理得到四边形EFGH为平行四边形,证明∠FGH=90°,根据矩形的判定定理证明.
【详解】
∵E,F分别是边AB,BC的中点,
∴EF=AC,EF∥AC,
同理,HG=AC,HG∥AC,
∴EF=HG,EF∥HG,
∴四边形EFGH为平行四边形,
∵F,G分别是边BC,CD的中点,
∴FG∥BD,
∵
∴∠FGH=90°,
∴平行四边形EFGH为矩形,
故选B.
本题考查的是中点四边形,掌握三角形中位线定理,矩形的判定定理是解题的关键.
6、B
【解析】
根据等腰三角形的性质及反比例函数k的几何意义即可求解.
【详解】
过点A作AE⊥x轴,
∵AC=AO,
∴CE=EO,∴S△ACO=2 S△ACE
∵△ACO的面积为8.
∴=8,
∵反比例函数过二四象限,
∴k=-8
故选B
此题主要考查反比例函数与几何综合,解题的关键是熟知反比例函数k的性质.
7、D
【解析】
分析:根据勾股定理的逆定理,对四个选项中的各组数据分别进行计算,如果三角形的三条边符合a2+b2=c2,则可判断是直角三角形,否则就不是直角三角形.
解答:解:∵72+242=49+576=625=1.
∴如果这组数为一个三角形的三边长,能构成直角三角形.
故选D.
8、D
【解析】
分别根据同底数幂的乘除运算法则以及幂的乘方和合并同类项法则求出即可.
【详解】
A选项:m•m2•m3=m6,故此选项错误;
B选项:m2+m2=2m2,故此选项错误;
C选项:(m4)2=m8,故此选项错误;
D选项:(-2m)2÷2m3=,此选项正确.
故选:D.
考查了同底数幂的乘除运算法则以及幂的乘方和合并同类项法则等知识,熟练应用运算法则是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由于关于x的一元二次方程有一个非零根,那么代入方程中即可得到n2−mn+n=0,再将方程两边同时除以n即可求解.
【详解】
解:∵关于x的一元二次方程有一个非零根,
∴n2−mn+n=0,
∵−n≠0,
∴n≠0,
方程两边同时除以n,得n−m+1=0,
∴m−n=1.
故答案为:1.
此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程进而解决问题.
10、或
【解析】
分逆时针旋转和顺时针旋转两种情况考虑:①顺时针旋转时,由点D的坐标利用正方形的性质可得出正方形的边长以及BD的长度,由此可得出点D′的坐标;②逆时针旋转时,找出点B′落在y轴正半轴上,根据正方形的边长以及BD的长度即可得出点D′的坐标.综上即可得出结论.
【详解】
解:分逆时针旋转和顺时针旋转两种情况(如图所示):
①顺时针旋转时,点B′与点O重合,
∵点D(4,3),四边形OABC为正方形,
∴OA=BC=4,BD=1,
∴点D′的坐标为(-1,0);
②逆时针旋转时,点B′落在y轴正半轴上,
∵OC=BC=4,BD=1,
∴点B′的坐标为(0,8),点D′的坐标为(1,8).
故答案为:(-1,0)或(1,8).
本题考查了正方形的性质,旋转的性质,以及坐标与图形变化中的旋转,分逆时针旋转和顺时针旋转两种情况考虑是解题的关键.
11、3
【解析】
连接DE,交AC于点P,连接BD.点B与点D关于AC对称,DE的长即为PE+PB的最小值,根据勾股定理即可得出DE的长度.
【详解】
连接DE,交AC于点P,连接BD.
∵点B与点D关于AC对称,
∴DE的长即为PE+PB的最小值,
∵AB=6,E是BC的中点,
∴CE=3,
在Rt△CDE中,
DE=
=
=
=3.
故答案为3.
主要考查轴对称,勾股定理等考点的理解,作出辅助线得出DE的长即为PE+PB的最小值为解决本题的关键.
12、2
【解析】
解:正方形为旋转对称图形,绕中心旋转每90°便与自身重合. 可判断每个阴影部分的面积为正方形面积的,这样可得答案填2.
13、,,
【解析】
根据题意画出图形,由平行四边形的性质两组对边分别平行且相等来确定点M的坐标.
【详解】
解:①当如图1时,
∵C(0,2),A(1,0),B(4,0),
∴AB=3,
∵四边形ABMC是平行四边形,
∴M(3,2);
②当如图2所示时,同①可知,M(-3,2);
③当如图3所示时,过点M作MD⊥x轴,
∵四边形ACBM是平行四边形,
∴BD=OA=1,MD=OC=2,
∴OD=4+1=5,
∴M(5,-2);
综上所述,点M坐标为(3,2)、(-3,2)、(5,-2).
本题考查了平行四边形的性质和判定,利用分类讨论思想是本题的关键.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
分析:先化简,再把代入化简后的式子进行运算即可.
详解:
,
当x=时,
原式=
点睛:本题考查了分式的化简求值.
15、四边形是菱形,理由见解析。
【解析】
根据题意先证明四边形是平行四边形,再根据垂直平分线的性质即可求解.
【详解】
解:四边形是菱形,理由如下:
四边形是平行四边形
又 垂直平分
在和中
四边形是平行四边形
又
四边形是菱形
此题主要考查菱形的判定,解题的关键是熟知全等三角形的判定与性质及菱形的判定定理.
16、(1)OM=ON;(2)成立.(3)O在移动过程中可形成线段AC;(4)O在移动过程中可形成线段AC.
【解析】
试题分析:(1)根据△OBM与△ODN全等,可以得出OM与ON相等的数量关系;
(2)连接AC、BD,则通过判定△BOM≌△CON,可以得到OM=ON;
(3)过点O作OE⊥BC,作OF⊥CD,可以通过判定△MOE≌△NOF,得出OE=OF,进而发现点O在∠C的平分线上;
(4)可以运用(3)中作辅助线的方法,判定三角形全等并得出结论.
试题解析:(1)若点O与点A重合,则OM与ON的数量关系是:OM=ON;
(2)仍成立.
证明:如图2,连接AC、BD.
由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°.∵∠MON=90°,∴∠BOM=∠CON,在△BOM和△CON中,∵∠OBM=∠OCN,BO=CO,∠BOM=∠CON,∴△BOM≌△CON(ASA),∴OM=ON;
(3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°.又∵∠C=90°,∴∠EOF=90°=∠MON,∴∠MOE=∠NOF.
在△MOE和△NOF中,∵∠OEM=∠OFN,∠MOE=∠NOF,OM=ON,∴△MOE≌△NOF(AAS),∴OE=OF.
又∵OE⊥BC,OF⊥CD,∴点O在∠C的平分线上,∴O在移动过程中可形成线段AC;
(4)O在移动过程中可形成直线AC.
考点:四边形综合题;全等三角形的判定与性质;角平分线的性质;探究型;操作型;压轴题.
17、 (1)x≥1, (2)x≤3,(3)见解析;(4)1≤x≤3
【解析】
试题分析:先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.空心圈表示不包含该点,实心点表示包含该点.
解:(1)x≥1 (2)x≤3
(3)如图所示.
(4)1≤x≤3
18、(1) 0.2;(2)
【解析】
(1)根据题意可知客厅中心的正方形边长为 4m, 再结合图形即可求得回字型黑色边框的宽度;
(2)根据白色瓷砖区域Ⅱ的面积由四个全等的长方形及客厅中心的正方形组成,可得关于x的方程,解方程后进行讨论即可得答案.
【详解】
(1)由已知可得客厅中心的正方形边长为 4m,
由图可得边框宽度为 6 4 0.8 2 0.2 m,
即回字型黑色边框的宽度为0.2m;
(2)由已知可列方程:4x6 2x 16 26,
解得:x1= ,x2= ,
当 x=时, 2 4 9 >6,不符合实际,舍去,
∴x=.
本题考查了一元二次方程的应用,弄清题意,找出等量关系列出方程是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
分两种情况讨论,(1)当矩形的其中一边在上时,设,则,根据矩形的面积列出方程并求解,然后求得矩形的周长;(2)当矩形的其中一边在上时,设,则,根据矩形的面积列出方程并求解,然后求得矩形的周长;两个周长进行比较可得结果.
【详解】
(1)当矩形的其中一边在上时,如图所示:
设,则
∵
∴
∴
整理得:解得
当时
当时
∵
∴矩形的周长最小值为
(2)当矩形的其中一边在上时,如图所示:
设,则
∵
∴
∴
整理得:解得
所以和(1)的结果一致
综上所述:矩形周长的最小值为
本题考查了矩形的面积和一元二次方程,利用数形结合是常用的解题方法.
20、-1.
【解析】
将x=1代入m=-2x+1可求出m值,此题得解.
【详解】
解:当x=1时,m=-2×1+1=-1.
故答案为:-1.
本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.
21、
【解析】
解:由于直线过点A(0,2),P(1,m),
则,解得,
,
故所求不等式组可化为:
mx>(m-2)x+2>mx-2,
0>-2x+2>-2,
解得:1<x<2,
22、
【解析】
通过画一次函数的图象,从图象观察进行解答,根据当时函数的图象在的图象的上方进行解答即可.
【详解】
如下图由函数的图象可知,当时函数的图象在的图象的上方,即.
故答案为:.
本题考查的是一次函数的图象,利用数形结合进行解答是解答此题的关键.
23、
【解析】
试题考查知识点:二元一次方程组的解法
思路分析:此题用加减法更好
具体解答过程:
对于,
两个方程相加,得:
3x=6即x=2
把x=2代入到2x-y=5中,得:
y=-1
∴原方程组的解是:
试题点评:
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;
(2)见解析.
【解析】
(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;
(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.
【详解】
(1)证明:∵AE∥BC,DE∥AB ,
∴四边形ABDE是平行四边形,
∴AE=BD,
∵AD是边BC上的中线,
∴BD=DC,
∴AE=DC,
又∵AE∥BC,
∴四边形ADCE是平行四边形.
(2) 证明:∵∠BAC=90°,AD是边BC上的中线.
∴AD=CD
∵四边形ADCE是平行四边形,
∴四边形ADCE是菱形.
本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.
25、(1);(2)如图所示见解析.
【解析】
1直接利用速度时间路程进而得出答案;
2直接利用正比例函数图象画法得出答案.
【详解】
(1)由题意可得:;
(2)如图所示:
考查了一次函数的应用,正确得出函数关系式是解题关键.
26、当x=5时,y=3×5+6=1.
【解析】
根据两平行直线的解析式的k值相等求出k,然后把经过的点的坐标代入解析式计算求出b值,即可得解.
【详解】
解:∵一次函数y=kx+b的图象平行于直线y=3x,
∴k=3,
∴y=3x+b
把点(﹣1,1)代入得,3=﹣1×3+b,
解得b=6,
所以,一次函数的解析式为,y=3x+6,
当x=5时,y=3×5+6=1.
本题考查了两直线平行的问题,根据平行直线解析式的k值相等求出k值是解题的关键,也是本题的突破口.
题号
一
二
三
四
五
总分
得分
2024-2025学年江苏省扬州市田家炳实验中学数学九上开学检测试题【含答案】: 这是一份2024-2025学年江苏省扬州市田家炳实验中学数学九上开学检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省扬州市江都区江都实验中学数学九上开学达标检测试题【含答案】: 这是一份2024-2025学年江苏省扬州市江都区江都实验中学数学九上开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省苏州市青云中学九上数学开学达标测试试题【含答案】: 这是一份2024-2025学年江苏省苏州市青云中学九上数学开学达标测试试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。