|试卷下载
终身会员
搜索
    上传资料 赚现金
    吉林省长春市实验繁荣学校2025届九上数学开学学业质量监测试题【含答案】
    立即下载
    加入资料篮
    吉林省长春市实验繁荣学校2025届九上数学开学学业质量监测试题【含答案】01
    吉林省长春市实验繁荣学校2025届九上数学开学学业质量监测试题【含答案】02
    吉林省长春市实验繁荣学校2025届九上数学开学学业质量监测试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    吉林省长春市实验繁荣学校2025届九上数学开学学业质量监测试题【含答案】

    展开
    这是一份吉林省长春市实验繁荣学校2025届九上数学开学学业质量监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在▱ABCD中,AE⊥CD于点E,∠B=65°,则∠DAE等于( )
    A.15°B.25°C.35°D.65°
    2、(4分)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=20,CE=15,CF=7,AF=24,则BE的长为( )
    A.10B.C.15D.
    3、(4分)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了( )
    A.2cmB.3cmC.4cmD.5cm
    4、(4分)如图是甲、乙两名运动员正式比赛前的5次训练成绩的折线统计图,你认为成绩较稳定的是( )
    A.甲B.乙
    C.甲、乙的成绩一样稳定D.无法确定
    5、(4分)如图,正方形ABCD与正方形EBHG的边长均为,正方形EBHG的顶点E恰好落在正方形ABCD的对角线BD上,边EG与CD相交于点O,则OD的长为
    A.
    B.
    C.
    D.
    6、(4分)小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是( )
    A.B.
    C.D.
    7、(4分)在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度,所得到的点坐标为( )
    A.(1,0)B.(1,2)C.(5,4)D.(5,0)
    8、(4分)如图,BE、CD 相交于点 A,连接 BC,DE,下列条件中不能判断△ABC∽ADE 的是( )
    A.∠B=∠DB.∠C=∠EC.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知x=4是一元二次方程x2-3x+c=0的一个根,则另一个根为______.
    10、(4分)如图,线段两个点的坐标分别为,,以原点为位似中心,将线段缩小得到线段,若点的坐标为,则点的坐标为______.
    11、(4分)在甲、乙两名同学中选拔一人参加校园“中华诗词”大赛,在相同的测试条件下,两人5次测试成绩分别是:甲:79,86,82,85,83;乙:88,79,90,81,72;数据波动较小的一同学是_____.
    12、(4分)若二次根式有意义,则的取值范围是______.
    13、(4分)已知二次函数y=-x-2x+3的图象上有两点A(-7,),B(-8,),则 ▲ .(用>、<、=填空).
    三、解答题(本大题共5个小题,共48分)
    14、(12分)为增强学生的身体素质,教育行政部门规定每位学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
    (1)在这次调查中共调查了多少名学生?
    (2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;
    (3)户外活动时间的众数和中位数分别是多少?
    (4)若该市共有20000名学生,大约有多少学生户外活动的平均时间符合要求?
    15、(8分)在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边△APE,连接CE.
    (1)如图1,当点P在菱形ABCD内部时,则BP与CE的数量关系是 ,CE与AD的位置关系是 .
    (2)如图2,当点P在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;
    (3)如图2,连接BE,若AB=2,BE=2,求AP的长.
    16、(8分)村有肥料200吨,村有肥料300吨,现要将这些肥料全部运往、两仓库.从村往、两仓库运肥料的费用分别为每吨20元和25元;从村往、两仓库运肥料的费用分别为每吨15元和18元;现仓库需要肥料240吨,现仓库需要肥料260吨.
    (1)设村运往仓库吨肥料,村运肥料需要的费用为元;村运肥料需要的费用为元.
    ①写出、与的函数关系式,并求出的取值范围;
    ②试讨论、两村中,哪个村的运费较少?
    (2)考虑到村的经济承受能力,村的运输费用不得超过4830元,设两村的总运费为元,怎样调运可使总运费最少?
    17、(10分)一辆汽车和一辆摩托车分别从,两地去同一城市,它们离地的路程随时间变化的图象如图所示,根据图象中的信息解答以下问题:
    (1),两地相距______;
    (2)分别求出摩托车和汽车的行驶速度;
    (3)若两图象的交点为,求点的坐标,并指出点的实际意义.
    18、(10分)四边形ABCD是边长为4的正方形,点E在边AD所在的直线上,连接CE,以CE为边,作正方形CEFG(点D,点F在直线CE的同侧),连接BF,
    图1 图2
    (1)如图1,当点E与点A重合时,则_____;
    (2)如图2,当点E在线段AD上时,,
    ①求点F到AD的距离;
    ②求BF的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若分式的值为0,则的值是 _____.
    20、(4分)在平行四边形中,,若,,则的长是__________.
    21、(4分)将二次函数化成的形式,则__________.
    22、(4分)在□ABCD中,已知∠A=110°,则∠D=__________.
    23、(4分)二次函数的最大值是____________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,E、F是▱ABCD对角线AC上的两点,且求证:≌;
    25、(10分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F
    (1)求证:△AEF≌△DEB;
    (2)证明四边形ADCF是菱形;
    (3)若AC=4,AB=5,求菱形ADCF 的面积.
    26、(12分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.
    (1)采用树形图法(或列表法)列出两次摸球出现的所有可能结果;
    (2)求摸出的两个球号码之和等于5的概率.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    分析:由在▱ABCD中,∠B=65°,根据平行四边形的对角相等,即可求得∠D的度数,继而求得答案.
    详解:∵四边形ABCD是平行四边形,
    ∴∠D=∠B=65°,
    ∵AE⊥CD,
    ∴∠DAE=90°-∠D=25°.
    故选B.
    点睛:此题考查了平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.
    2、C
    【解析】
    分析:根据平行四边形的面积,可得设 则在Rt中,用勾股定理即可解得.
    详解:∵四边形ABCD是平行四边形,


    设 则
    在Rt中,

    解得(舍去),

    故选C.
    点睛:考查了平行四边形的面积,平行四边形的性质,勾股定理等,难度较大,根据面积得出是解题的关键.
    3、A
    【解析】
    根据勾股定理可以得到AD和BD的长度,然后用AD+BD-AB的长度即为所求.
    【详解】
    根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.
    主要考查了勾股定理解直角三角形.
    4、A
    【解析】
    观察图象可知:甲的波动较小,成绩较稳定.
    【详解】
    解:从图得到,甲的波动较小,甲的成绩稳定.
    故选:A.
    本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    5、B
    【解析】
    由正方形性质可得AB=AD=CD=BE=,∠A=∠C=∠DEO=90〬,∠EDO=45〬,由勾股定理得BD=,求出DE,再根据勾股定理求OD.
    【详解】
    解:因为,正方形ABCD与正方形EBHG的边长均为,
    所以,AB=AD=CD=BE=,∠A=∠C=∠DEO=90〬,∠EDO=45〬,
    所以,BD=,
    所以,DE=BD-BE=2- ,
    所以,OD=
    故选B.
    本题考核知识点:正方形,勾股定理.解题关键点:运用勾股定理求出线段长度.
    6、C
    【解析】
    根据小李距家3千米,路程随着时间的增大而增大确定合适的函数图象即可.
    【详解】
    ∵小李距家3千米,∴离家的距离随着时间的增大而增大.
    ∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C符合.
    故选C.
    本题考查了函数图象,比较简单,了解横、总坐标分别表示什么是解题的关键.
    7、D
    【解析】
    根据“横坐标右移加,左移减;纵坐标上移加,下移减”的规律求解即可.
    【详解】
    将点P(3,2)向右平移2个单位长度得到(5,2),再向下平移2个单位长度,所得到的点坐标为(5,0).
    故选D.
    本题考查了坐标与图形变化-平移:向右平移a个单位,坐标P(x,y) (x+a,y);向左平移a个单位,坐标P(x,y)(x-a,y);向上平移b个单位,坐标P(x,y)(x,y+b);向下平移b个单位,坐标P(x,y)(x,y-b).
    8、C
    【解析】
    根据两个三角形相似的判定定理来判断:两边对应成比例且夹角相等,两个三角形相似.;三边对应成比例,两个三角形相似;两角对应相等,两个三角形相似。即可分析得出答案。
    【详解】
    解:∵∠BAC=∠DAE,
    ∴当∠B=∠D 或∠C=∠E 时,可利用两角对应相等的两个三角形相似证得△ABC∽ADE, 故 A、B 选项可判断两三角形相似;
    当 时,可得 ,结合∠BAC=∠DAE,则可证得△ABC∽△AED,而不能得
    出△ABC∽△ADE,故 C 不能判断△ABC∽ADE;
    当 时,结合∠BAC=∠DAE,可证得△ABC∽△ADE,故 D 能判断△ABC∽△ADE;
    故本题答案为:C
    两个三角形相似的判定定理是本题的考点,熟练掌握其判定定理是解决此题的关键。
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、-1
    【解析】
    另一个根为t,根据根与系数的关系得到4+t=3,然后解一次方程即可.
    【详解】
    设另一个根为t,
    根据题意得4+t=3,
    解得t=-1,
    即另一个根为-1.
    故答案为-1.
    此题考查根与系数的关系,解题关键在于掌握若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=− .
    10、
    【解析】
    利用点B和点D的坐标之间的关系得到线段AB缩小2.5倍得到线段CD,然后确定C点坐标.
    【详解】
    解:∵将线段AB缩小得到线段CD,点B(5,0)的对应点D的坐标为(2.0),
    ∴线段AB缩小2.5倍得到线段CD,
    ∴点C的坐标为(1,2).
    本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
    11、答案为甲
    【解析】
    方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    【详解】
    解: =83(分),
    =82(分);
    经计算知S甲2=6,S乙2=1.
    S甲2<S乙2,
    ∴甲的平均成绩高于乙,且甲的成绩更稳定,
    故答案为甲
    本题主要考查平均数、方差等知识,解题的关键是记住:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    12、
    【解析】
    根据二次根式有意义的条件即可求解.
    【详解】
    依题意得a+1≥0,解得
    故填:
    此题主要考查二次根式的定义,解题的关键是熟知被开方数为非负数.
    13、>。
    【解析】
    根据已知条件求出二次函数的对称轴和开口方向,再根据点A、B的横坐标的大小即可判断出y1与y2的大小关系:
    ∵二次函数y=﹣x2﹣2x+3的对称轴是x=﹣1,开口向下,
    ∴在对称轴的左侧y随x的增大而增大。
    ∵点A(﹣7,y1),B(﹣8,y2)是二次函数y=﹣x2﹣2x+3的图象上的两点,且﹣7>﹣8,
    ∴y1>y2。
    三、解答题(本大题共5个小题,共48分)
    14、 (1)50;(2)12;(3)中数是1小时,中位数是1小时;(4)16000人.
    【解析】
    试题分析:(1)根据户外活动时间是0.5小时的有10人,所占的百分比是20%,据此即可求得调查的总人数;
    (2)用总人数乘以对应的百分比即可求得人数,从而补全直方图;
    (3)根据众数、中位数的定义即可求解;
    (4)利用总人数乘以对应的比分比即可求解.
    试题解析:(1)调查的总人数是10÷20%=50(人);
    (2)户外活动时间是1.5小时的人数是50×24%=12(人),

    (3)中数是1小时,中位数是1小时;
    (4)学生户外活动的平均时间符合要求的人数是20000×(1-20%)=16000(人).
    答:大约有16000学生户外活动的平均时间符合要求.
    考点:1.频数(率)分布直方图;2.扇形统计图;3.加权平均数;4.中位数;5.众数.
    15、(1)BP=CE,CE⊥AD;(2)结论仍然成立,理由见解析;(3)2
    【解析】
    (1)由菱形ABCD和∠ABC=60°可证△ABC与△ACD是等边三角形,由等边△APE可得AP=AE,∠PAE=∠BAC=60°,减去公共角∠PAC得∠BAP=∠CAE,根据SAS可证得△BAP≌△CAE,故有BP=CE,∠ABP=∠ACE.由菱形对角线平分一组对角可证∠ABP=30°,故∠ACE=30°即CE平分∠ACD,由AC=CD等腰三角形三线合一可得CE⊥AD.
    (2)结论不变.证明过程同(1).
    (3)在Rt△AOP中,求出OA,OP即可解决问题.
    【详解】
    (1)BP=CE,CE⊥AD.
    理由:∵菱形ABCD中,∠ABC=60°
    ∴AB=BC=CD=AD,∠ADC=∠ABC=60°
    ∴△ABC、△ACD是等边三角形
    ∴AB=AC,AC=CD,∠BAC=∠ACD=60°
    ∵△APE是等边三角形
    ∴AP=AE,∠PAE=60°
    ∴∠BAC-∠PAC=∠PAE-∠PAC
    即∠BAP=∠CAE,
    ∴△BAP≌△CAE(SAS)
    ∴BP=CE,∠ABP=∠ACE
    ∵BD平分∠ABC
    ∴∠ACE=∠ABP=∠ABC=30°
    ∴CE平分∠ACD
    ∴CE⊥AD.
    故答案为BP=CE,CE⊥AD.
    (2)结论仍然成立.理由如下:如图,设CE交AD于H,连接AC.
    ∵四边形ABCD是菱形,∠ABC=60°,
    ∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°.
    ∵△APE是等边三角形,
    ∴AB=AC,AP=AE,∠BAC=∠PAE=60°.
    ∴△BAP≌△CAE.
    ∴BP=CE,∠ABP=∠ACE=30°.
    ∵∠CAH=60°,
    ∴∠CAH+∠ACH=90°.
    ∴∠AHC=90°,即CE⊥AD.
    (3)如图,连接BE,
    由(2)可知CE⊥AD,BP= CE.
    在菱形ABCD中,AD∥BC,∴CE⊥BC.
    ∵BC=AB=2,BE=2,
    在Rt△BCE中,CE==1.
    ∴BP=CE=1.
    ∵AC与BD是菱形的对角线,
    ∴∠ABD=∠ABC=30°,AC⊥BD.
    ∴OA=AB=,BO==3,
    ∴OP=BP-BO=5,
    在Rt△AOP中,AP==2,
    本题考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理.第(2)题的证明过程可由(1)适当转化而得,第(3)题则可直接运用(2)的结论解决问题.
    16、(1)①见解析;②见解析;(2)见解析.
    【解析】
    (1)①A村运肥料需要的费用=20×运往C仓库肥料吨数+25×运往D仓库肥料吨数;
    B村运肥料需要的费用=15×运往C仓库肥料吨数+18×运往D仓库肥料吨数;根据吨数为非负数可得自变量的取值范围;
    ②比较①中得到的两个函数解析式即可;
    (2)总运费=A村的运费+B村的运费,根据B村的运费可得相应的调运方案.
    【详解】
    解:(1)①;


    ②当时 即
    两村运费相同;
    当时 即
    村运费较少;
    当时 即
    村运费较少;
    (2)

    当取最大值50时,总费用最少
    即运吨,运吨;村运吨,运吨.
    综合考查了一次函数的应用;根据所给未知数得到运往各个仓库的吨数是解决本题的易错点.
    17、(1)20;(2),; (3)即,的实际意义为出发1小时后汽车和摩托车在距离地的地点相遇.(或距离地).
    【解析】
    (1)因为汽车和摩托车分别从A,B两地去同一城市,从y轴上可看出A,B两地相距20km;
    (2)根据图象可知,摩托车4小时行驶160千米,汽车3小时行驶180千米,利用速度=路程÷时间即可分别求出摩托车和汽车的行驶速度;
    (3)分别求出摩托车和汽车离A地的路程y(km)随时间x(h)变化的函数解析式,再将它们联立组成方程组,解方程组得到点P的坐标,然后指出点P的实际意义.
    【详解】
    解:(1)由图象可知,A,B两地相距20km.
    故填:20;
    (2)根据图像汽车的速度为
    摩托车的速度为
    (3)设汽车行驶图像对应的一次函数的表达式为.根据题意,把已知的两点
    坐标和代入,
    解得,.
    这个一次函数表达式为
    同理解得摩托车对应的一次函数的表达式为
    由题意解方程组
    得,
    即,的实际意义为出发1小时后汽车和摩托车在距离地的地点相遇.(或距离地)
    本题考查了一次函数的应用,一次函数解析式的确定,路程、速度与时间关系的应用,坐标确定位置,两直线的交点坐标求法,以及函数图象的读图能力.要理解函数图象所代表的实际意义是什么才能从中获取准确的信息.
    18、 (1);(2)①点F到AD的距离为1;②BF=.
    【解析】
    (1)根据勾股定理依次求出AC、CF、BF长即可;
    (2)①过点F作,由正方形的性质可证,根据全等三角形的性质可得FH的长;②延长FH交BC的延长线于点K,求出BK、FK的长,根据勾股定理可得解.
    【详解】
    解:(1) 当点E与点A重合时,点C、D、F在一条直线,连接CF,在中,,同理可得
    (2)①过点F作交AD的延长线于点H,如图所示
    ∵四边形CEFG是正方形,
    ∴,
    ∴,
    又∵四边形ABCD是正方形,

    ∴,

    又∵,


    ∵,,
    ∴,
    ∴,即点F到AD的距离为1.
    ②延长FH交BC的延长线于点K,如图所示
    ∴,
    ∴四边形CDHK为矩形,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    在中,
    本题综合考查了四边形及三角形,主要涉及的知识点有勾股定理、正方形的性质、矩形的判定与性质、全等三角形的证明与性质,灵活利用勾股定理求线段的长是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    分式值为零的条件:分子等于零且分母不等于零,由此列出不等式和等式,求解即可.
    【详解】
    ∵分式的值为0,
    ∴,
    ∴x=1.
    故答案是:1.
    考查了分式的值为零的条件,解题关键是:分式值为零的条件是分子等于零且分母不等于零.
    20、10
    【解析】
    根据平行四边形对角线的性质可得BD=2BO,AO=3,继而根据勾股定理求出BO的长即可求得答案.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴BD=2BO,AO==3,
    ∵AB⊥AC,
    ∴∠BAO=90°,
    ∴BO==5,
    ∴BD=10,
    故答案为:10.
    本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的对角线互相平分是解题的关键.
    21、
    【解析】
    利用配方法,加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式.
    【详解】
    解:,


    故答案为:.
    本题考查了二次函数的三种形式:一般式:,顶点式:;两根式:.正确利用配方法把一般式化为顶点式是解题的关键.
    22、70°
    【解析】
    在□ABCD中,∠A+∠D=180°,因为∠A=110°,所以∠D=70°.
    故答案:70°.
    23、-5
    【解析】
    根据二次函数的性质求解即可.
    【详解】
    ∵的a=-2<0,
    ∴当x=1时,有最大值-5.
    故答案为-5.
    本题考查了二次函数的最值:二次函数y=ax2+bx+c,当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=-时,y=;(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=-时,y=.
    二、解答题(本大题共3个小题,共30分)
    24、证明见解析.
    【解析】
    根据平行四边形性质得出AD=BC,AD//BC,根据平行线性质求出∠DAF=∠BCE,求出∠AFD=∠CEB,再根据AAS证△ADF≌△CBE即可.
    【详解】
    证明:,


    四边形ABCD是平行四边形


    在和中,

    ≌.
    本题考查了平行四边形性质、平行线的性质、全等三角形的性质和判定等知识点,关键是推出证△ADF和△CBE全等的三个条件,题目比较好,难度适中.
    25、(1)证明详见解析;(2)证明详见解析;(3)1.
    【解析】
    (1)利用平行线的性质及中点的定义,可利用AAS证得结论;
    (2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
    (3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.
    【详解】
    (1)证明:∵AF∥BC,
    ∴∠AFE=∠DBE,
    ∵E是AD的中点,
    ∴AE=DE,
    在△AFE和△DBE中,
    ∴△AFE≌△DBE(AAS);
    (2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
    ∵AD为BC边上的中线
    ∴DB=DC,
    ∴AF=CD.
    ∵AF∥BC,
    ∴四边形ADCF是平行四边形,
    ∵∠BAC=90°,D是BC的中点,E是AD的中点,
    ∴AD=DC=BC,
    ∴四边形ADCF是菱形;
    (3)连接DF,
    ∵AF∥BD,AF=BD,
    ∴四边形ABDF是平行四边形,
    ∴DF=AB=5,
    ∵四边形ADCF是菱形,
    ∴S菱形ADCF=AC▪DF=×4×5=1.
    本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
    26、(1)见解析;(2).
    【解析】
    (1)画树状图或列表都可以列出两次摸球出现的所有可能结果共有6种;(2)利用(1)中的结果可确定摸出的两个球号码之和等于5的结果有2种,然后利用概率公式计算即可.
    【详解】
    解:(1)根据题意,可以画出如下的树形图:
    从树形图可以看出,摸出两球出现的所有可能结果共有6种;
    (2)设两个球号码之和等于5为事件.
    摸出的两个球号码之和等于5的结果有2种,它们是:.

    考点:简单事件的概率.
    题号





    总分
    得分
    相关试卷

    吉林省长春市汽开区2025届数学九上开学学业质量监测试题【含答案】: 这是一份吉林省长春市汽开区2025届数学九上开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    吉林省长春市吉大尚德学校2025届数学九上开学学业质量监测模拟试题【含答案】: 这是一份吉林省长春市吉大尚德学校2025届数学九上开学学业质量监测模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广东省深圳实验学校2024年九上数学开学学业质量监测模拟试题【含答案】: 这是一份广东省深圳实验学校2024年九上数学开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map