2024-2025学年吉林省长春市第八中学数学九上开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,中,点在边上,点在边上,且,则与相似的三角形的个数为( )
A.4个B.3个C.2个D.1个
2、(4分)甲、乙两名同学在初二下学期数学6章书的单元测试中,平均成绩都是86分,方差分别是,,则成绩比较稳定的是( )
A.甲B.乙C.甲和乙一样D.无法确定
3、(4分)在平面直角坐标系中,点M(3,2)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
4、(4分)如图,在中,的平分线交于,若,,则的长度为( )
A.B.C.D.
5、(4分)下列说法中,正确的是
A.相等的角是对顶角B.有公共点并且相等的角是对顶角
C.如果和是对顶角,那么D.两条直线相交所成的角是对顶角
6、(4分)如图,在菱形ABCD中,∠B=120°,对角线AC=6cm,则AB的长为( )cm
A.B.C.D.
7、(4分)在平面直角坐标系中,函数y=(k﹣1)x+(k+2)(k﹣2)的图象不经过第二象限与第四象限,则常数k满足( )
A.k=2B.k=﹣2C.k=1D.k>1
8、(4分)如图,在正方形中,点为上一点,与交于点,若,则
A.60°B.65°C.70°D.75°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,正方形面积为,延长至点,使得,以为边在正方形另一侧作菱形,其中,依次延长类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点则四边形的面积为___________.
10、(4分)如图,已知中,边上的高,则的面积是______,边上的高的长是______.
11、(4分)已知点A(),B()是一次函数图象上的两点,当时,__.(填“>”、“=”或“<”)
12、(4分)如图,中,,点在上,,将线段沿方向平移得到线段,点分别落在边上,则的周长是 cm.
13、(4分)若有意义,则字母x的取值范围是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)解答下列各题:
(1)计算:;
(2)当时,求代数式的值.
15、(8分)选用适当的方法解下列方程:
(1)(x-2)2-9=0;
(2)x(x+4)=x+4.
16、(8分)如图,过轴正半轴上一点的两条直线,分别交轴于点、两点,其中点的坐标是,点在原点下方,已知.
(1)求点的坐标;
(2)若的面积为,求直线的解析式.
17、(10分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:
(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;
(2)若按完成作业、单元检测、期末考试三项成绩按的权重来确定期末评价成绩.
①请计算小张的期末评价成绩为多少分?
②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?
18、(10分)化简并求值:,其中x=﹣1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,先画一个边长为1的正方形,以其对角线为边画第二个正方形,再以第二个正方形的对角线为边画第三个正方形,…,如此反复下去,那么第n个正方形的对角线长为_____.
20、(4分)如图,等腰直角△ABC中,∠BAC=90°,BC=6,过点C作CD⊥BC,CD=2,连接BD,过点C作CE⊥BD,垂足为E,连接AE,则AE长为_____.
21、(4分)如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为_____
22、(4分)计算的结果为_____.
23、(4分)如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算
(1) (2)分解因式
(3)解方程:.
25、(10分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.
(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=1.求DE的长.
26、(12分)如图,在▱ABCD中,点O是对角线AC、BD的交点,AD⊥BD,且AB=10,AD=6,求AC的长.(结果保留根号)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由∠1=∠2=∠3,即可得DE∥BC,可得∠EDC=∠BCD,然后根据有两组角对应相等的两个三角形相似,即可判定△ADE∽△ABC,△ACD∽△ABC,又由相似三角形的传递性,可得△ADE∽△ABC∽△ACD,继而求得答案.
【详解】
∵∠1=∠2,
∴DE∥BC,
∴∠EDC=∠DCB,△ADE∽△ABC,
∵∠2=∠3,∠A=∠A,
∴△ACD∽△ABC,
∴△ADE∽△ABC∽△ACD,
∴图中与△ADE相似三角形共有2对.
故选C.
此题考查了相似三角形的判定.此题难度不大,解题的关键是掌握有两组角对应相等的两个三角形相似定理的应用,注意数形结合思想的应用.
2、A
【解析】
方差决定一组数据的稳定性,方差大的稳定性差,方差小的稳定好.
【详解】
∵,
∴
∴甲同学的成绩比较稳定
故选:A.
本题考查了方差与稳定性的关系,熟知方差小,稳定性好是解题的关键.
3、A
【解析】
根据平面直角坐标系中,点的坐标与点所在的象限的关系,即可得到答案.
【详解】
∵3>0,2>0,
∴点M(3,2)在第一象限,
故选A.
本题主要考查点的坐标与点所在象限的关系,掌握点的坐标的正负性与所在象限的关系,是解题的关键.
4、B
【解析】
由角平分线的定义和平行四边形的性质可求得∠ABE=∠AEB ,易得AB=AE.
【详解】
解:∵四边形ABCD为平行四边形,
∴AB=CD=3,AD∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AE=AB=3,
故选:B.
本题主要考查平行四边形的性质,利用平行线的性质和角平分线的定义求得∠ABE=∠AEB是解题的关键.
5、C
【解析】
本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.由此逐一判断.
【详解】
A、对顶角是有公共顶点,且两边互为反向延长线,相等只是其性质,错误;
B、对顶角应该是有公共顶点,且两边互为反向延长线,错误;
C、角的两边互为反向延长线的两个角是对顶角,符合对顶角的定义,正确.
D、两条直线相交所成的角有对顶角、邻补角,错误;
故选C.
要根据对顶角的定义来判断,这是需要熟记的内容.
6、D
【解析】
作辅助线,证明Rt△AEB为特殊的直角三角形,利用三角函数即可求解.
【详解】
如下图,连接BD,角AC于点E,
∵四边形ABCD为菱形,
∴AC⊥BD,∠AEB=90°,BD平分∠ABC,即∠ABE=60°,AE=3cm,
在Rt△AEB中, AE=3cm,
∴AB==3=2
故选D.
本题考查了菱形的性质,三角函数的实际应用,中等难度,作辅助线是解题关键.
7、A
【解析】
根据一次函数的性质求解.
【详解】
∵一次函数y=(k-1)x+(k+2)(k-2)的图象不经过第二象限与第四象限,
则k-1>0,且(k+2)(k-2)=0,解得k=2,
故选A.
本题考查一次函数的图象与系数的关系,关键是根据一次函数的性质解答.
8、C
【解析】
先证明△ABE≌△ADE,得到∠ADE=∠ABE=90°﹣25°=65°,在△ADE中利用三角形内角和180°可求∠AED度数.
【详解】
解:∵四边形ABCD是正方形,
∴∠ABC=90°,BA=DA,∠BAE=∠DAE=45°.
又AE=AE,
∴△ABE≌△ADE(SAS).
∴∠ADE=∠ABE=90°﹣25°=65°.
∴∠AED=180°﹣45°﹣65°=70°.
故选:C.
本题主要考查了正方形的性质,解决正方形中角的问题一般会涉及对角线平分对角成45°.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,首先利用正方形性质结合题意求出AD=CD=AG=DQ=1,然后进一步根据菱形性质得出DE=EF=DG=2,再后通过证明四边形NKQR是矩形得出QR=NK=,进一步可得,再延长NS交ML于点Z,利用全等三角形性质与判定证明四边形FHMN为正方形,最后进一步求解即可.
【详解】
如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,
∵ABCD为正方形,
∴∠CDG=∠GDK=90°,
∵正方形ABCD面积为1,
∴AD=CD=AG=DQ=1,
∴DG=CT=2,
∵四边形DEFG为菱形,
∴DE=EF=DG=2,
同理可得:CT=TN=2,
∵∠EFG=45°,
∴∠EDG=∠SCT=∠NTK=45°,
∵FE∥DG,CT∥SN,DG⊥CT,
∴∠FQP=∠FRN=∠DQE=∠NKT=90°,
∴DQ=EQ=TK=NK=,FQ=FE+EQ=,
∵∠NKT=∠KQR=∠FRN=90°,
∴四边形NKQR是矩形,
∴QR=NK=,
∴FR=FQ+QR=,NR=KQ=DK−DQ=,
∴,
再延长NS交ML于点Z,易证得:△NMZ≅△FNR(SAS),
∴FN=MN,∠NFR=∠MNZ,
∵∠NFR+∠FNR=90°,
∴∠MNZ+∠FNR=90°,
即∠FNM=90°,
同理可得:∠NFH=∠FHM=90°,
∴四边形FHMN为正方形,
∴正方形FHMN的面积=,
故答案为:.
本题主要考查了正方形和矩形性质与判定及与全等三角形性质与判定的综合运用,熟练掌握相关方法是解题关键.
10、12, 1.
【解析】
用BC×AE可求平行四边形的面积,再借助面积12=CD×AF可求AF.
【详解】
解:根据平行四边形的面积=底×高,可得
BC×AE=6×2=12;
则CD×AF=12,即4×AF=12,
所以AF=1.
故答案为12,1.
本题主要考查了平行四边形的性质,面积法求解平行四边形的高或某边长是解决此类问题常用的方法.
11、<
【解析】
试题解析:∵一次函数y=-1x+5中k=-1<0,
∴该一次函数y随x的增大而减小,
∵x1>x1,
∴y1<y1.
12、13.
【解析】
试题分析:∵CD沿CB平移7cm至EF
考点:平移的性质;等腰三角形的性质.
13、x≥﹣1.
【解析】
根据被开方数大于等于0列式计算即可得解.
【详解】
解:由题意得,x+1≥0,
解得x≥﹣1.
故答案为x≥﹣1.
三、解答题(本大题共5个小题,共48分)
14、(1)(2)1.
【解析】
(1)根据实数的运算法则即可化简;
(2)根据整式的运算法则进行化简即可求解.
【详解】
解:(1)原式.
(2)原式,将代入得
此题主要考查实数的运算,解题的关键是熟知实数的运算法则与整式的运算.
15、x1=5,x2=-1;(2)x1=1,x2=-4.
【解析】
根据一元二次方程的解法依次计算即可
【详解】
(x-2)2=9
x-2=±3
∴x1=5 x2=-1
(2)x(x+4)=x+4
若 x+4≠0则 x=1
若 x+4=0则 x=-4
∴x1=1 x2=-4
熟练掌握一元二次方程的解法是解决本题的关键,难度不大
16、(1)A(2,0);(2)直线解析式.
【解析】
(1)利用勾股定理即可解题,(2)根据的面积为,得到,得到C(0,-1),再利用待定系数法即可解题.
【详解】
(1)∵OB=3,,∠AOB=90°
∴OA=2,(勾股定理)
∴A(2,0)
(2)∵
∴BC=4
∴C(0,-1)
∴设直线解析式y=kx+b(k0)
∴,解得
∴直线解析式.
本题考查了一次函数与面积的实际应用,勾股定理的应用,用待定系数法求解函数解析式,中等难度,将面积问题转换成求点的坐标问题是解题关键.
17、 (1)80;(2)①81;②85.
【解析】
(1)直接利用算术平均数的定义求解可得;
(2)根据加权平均数的定义计算可得.
【详解】
解:(1)小张的期末评价成绩为(分;
(2)①小张的期末评价成绩为(分;
②设小王期末考试成绩为分,
根据题意,得:,
解得,
小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.
本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.
18、2.
【解析】
试题分析:先将进行化简,再将x的值代入即可;
试题解析:
原式=﹣•(x﹣1)==,
当x=﹣1时,原式=﹣2.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、()n.
【解析】
第1个正方形的边长是1,对角线长为;第二个正方形的边长为,对角线长为()2=2,第3个正方形的对角线长为()3;得出规律,即可得出结果.
【详解】
第1个正方形的边长是1,对角线长为;
第二个正方形的边长为,对角线长为()2=2
第3个正方形的边长是2,对角线长为2=()3;…,
∴第n个正方形的对角线长为()n;
故答案为()n.
本题主要考查了正方形的性质、勾股定理;求出第一个、第二个、第三个正方形的对角线长,得出规律是解决问题的关键.
20、
【解析】
分析:根据旋转的性质得到△ABF≌△ACE,进而得出△AEF为等腰直角三角形,根据两角对应相等的两三角形相似的判定可得△BCD∽△BEC,然后根据对应边成比例可得,然后根据勾股定理即可求解.
详解:把AE逆时针旋转90°,使AE=AF交BD于F,
根据旋转的性质可得△ABF≌△ACE,
即BF=CE,
∴△AEF是等腰直角三角形
∵CD⊥BC,CE⊥BD
∴∠BCD=∠CEB=90°
∵∠DBC=∠CBD,
∴△BCD∽△BEC
∴
∵BC=6,CD=2
∴BD==
即CE=
∴DE=
即BE=
∴EF=——=
∴AE=AF=
故答案为:.
点睛:此题主要考查了旋转变化的性质,等腰三角形的性质,相似三角形的判定与性质,勾股定理等知识,此题综合性较强,难度较大,解题的关键是准确作出辅助线,注意掌握数形结合思想与方程思想的应用.
21、3.
【解析】
由直角三角形的性质得到AC=2OB=10,利用勾股定理求出AB=CD=6,再根据三角形的中位线得到OM的长度.
【详解】
∵四边形ABCD是矩形,
∴∠ABC=∠D=90,AB=CD,
∵O是矩形ABCD对角线AC的中点,OB=5,
∴AC=2OB=10,
∴CD= ,
∵O是 AC的中点,M是AD的中点,
∴OM是△ACD的中位线,
∴OM= CD=3,
故填:3.
此题考查矩形的性质,矩形的一条对角线将矩形分为两个全等的直角三角形,根据直角三角形斜边中线等于斜边的一半求得AC,根据勾股定理求出CD,在利用三角形的中位线求出OM.
22、x﹣1
【解析】
同分母的分式相加,分母不变分子做加减法,然后再讲答案化简即可
【详解】
,故填x-1
本题考查分式的简单计算,熟练掌握运算法则是解题关键
23、
【解析】
先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.
【详解】
解:∵四边形是平行四边形,
∴对角线把平行四边形分成面积相等的四部分,
观察发现:图中阴影部分面积=S四边形,
∴针头扎在阴影区域内的概率为;
故答案为:.
此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.
二、解答题(本大题共3个小题,共30分)
24、① ;②;③无解
【解析】
(1)分别求出各不等式的解集,再根据小大大小中间找求出其公共解集即可;
(1)首先利用平方差公式进行分解,再利用完全平方公式进行二次分解即可;
(3)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
(1)
由①得x≥-1,
由②得x<1,
原不等式的解为-1≤x<1.
(1)原式=(a1+4)1-(4a)1,
=(a1+4+4a)(a1+4-4a),
=(a+1)1(a-1)1.
(3)去分母得:1-1x=1x-4-3,
移项合并得:4x=8,
解得:x=1,
经检验x=1是增根,分式方程无解.
(1)本题考查的是解一元一此不等式组,解答此题的关键是熟知解一元一此不等式组应遵循的法则,同大取较大,同小取较小,小大大小中间找,大大小小解不了.
(1)此题主要考查了公式法分解因式,关键是熟练掌握平方差公式:a1-b1=(a+b)(a-b),完全平方公式:a1±1ab+b1=(a±b)1.
(3)此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
25、(1)、证明过程见解析;(2)、
【解析】
试题分析:(1)已知AD平分∠BAC,可得∠EAD=∠ADE,再由∠EAD=∠ADE,可得∠BAD=∠ADE,即可得AB∥DE,从而得△DCE∽△BCA;(2)已知∠EAD=∠ADE,由三角形的性质可得AE=DE,设DE=x,所以CE=AC﹣AE=AC﹣DE=1﹣x,由(1)可知△DCE∽△BCA,根据相似三角形的对应边成比例可得x:3=(1﹣x):1,解得x的值,即可得DE的长.
试题解析:(1)证明:∵AD平分∠BAC,
∴∠BAD=∠DAC,
∵∠EAD=∠ADE,
∴∠BAD=∠ADE,
∴AB∥DE,
∴△DCE∽△BCA;
(2)解:∵∠EAD=∠ADE,
∴AE=DE,
设DE=x,
∴CE=AC﹣AE=AC﹣DE=1﹣x,
∵△DCE∽△BCA,
∴DE:AB=CE:AC,
即x:3=(1﹣x):1,
解得:x=,
∴DE的长是.
考点:相似三角形的判定与性质.
26、AC=4.
【解析】
首先利用勾股定理求得对角线的长,然后求得其一半的长,再次利用勾股定理求得的长后乘以2即可求得的长.
【详解】
解:,,,
,
四边形是平行四边形,
,,
,
.
本题考查了平行四边形的性质,解题的关键是两次利用勾股定理求解相关线段的长.
题号
一
二
三
四
五
总分
得分
批阅人
完成作业
单元测试
期末考试
小张
70
90
80
小王
60
75
2024-2025学年吉林省白城地区大安县九上数学开学学业质量监测试题【含答案】: 这是一份2024-2025学年吉林省白城地区大安县九上数学开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖州市吴兴区九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年湖州市吴兴区九上数学开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年合肥市包河数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年合肥市包河数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。