搜索
    上传资料 赚现金
    英语朗读宝

    湖南省茶陵县2024-2025学年九上数学开学学业水平测试试题【含答案】

    湖南省茶陵县2024-2025学年九上数学开学学业水平测试试题【含答案】第1页
    湖南省茶陵县2024-2025学年九上数学开学学业水平测试试题【含答案】第2页
    湖南省茶陵县2024-2025学年九上数学开学学业水平测试试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省茶陵县2024-2025学年九上数学开学学业水平测试试题【含答案】

    展开

    这是一份湖南省茶陵县2024-2025学年九上数学开学学业水平测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列说法:(1)所有的等腰三角形都相似;(2)所有的等腰直角三角形都相似;(3)有一个角相等的两个等腰三角形相似(4)顶角相等的两个等腰三角形相似.
    其中正确的有( )
    A.个B.个C. 个D.个
    2、(4分)在平面直角坐标系中,已知点在第四象限,且点到轴的距离是4,到轴的距离是3,那么点的坐标为( )
    A.B.C.D.
    3、(4分)小丽家在学校北偏西60°方向上,距学校4km,以学校所在位置为坐标原点建立直角坐标系,1km为一个单位长度,则小丽家所在位置的坐标为( )
    A.(﹣2,﹣2)B.(﹣2,2)C.(2,﹣2)D.(﹣2,﹣2)
    4、(4分)下列各式是最简二次根式的是( )
    A.B.C.D.
    5、(4分)如图,在平面直角坐标系中,已知,,顶点在第一象限,,在轴的正半轴上(在的右侧),,,与关于所在的直线对称.若点和点在同一个反比例函数的图象上,则的长是( )
    A.2B.3C.D.
    6、(4分)下列事件中,是必然事件的是( )
    A.3天内下雨B.打开电视机,正在播放广告
    C.367人中至少有2人公历生日相同D.a抛掷1个均匀的骰子,出现4点向上
    7、(4分)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是( )
    A.﹣3<x<2B.x<﹣3或x>2C.﹣3<x<0或x>2D.0<x<2
    8、(4分)如图中的数字都是按一定规律排列的,其中x的值是( )
    A.179B.181C.199D.210
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在一次测验中,初三(1)班的英语考试的平均分记为a分,所有高于平均分的学生的成绩减去平均分的分数之和记为m,所有低于平均分的学生的成绩与平均分相差的分数的绝对值的和记为n,则m与n的大小关系是 ______ .
    10、(4分)若关于x的方程产生增根,那么 m的值是______.
    11、(4分)若代数式在实数范围内有意义,则x的取值范围是_____.
    12、(4分)如图,已知:∠MON=30°,点A 、A 、A…在射线ON上,点B、B、B…在射线OM上,△ABA、△ABA、△ABA …均为等边三角形,若OA=1,则△A BA 的边长为____
    13、(4分)如图,菱形ABCD的对角线长分别为a、b,以菱形ABCD各边的中点为顶点作矩形,然后再以矩形的中点为顶点作菱形,……,如此下去,得到四边形A2019B2019C2019D2019的面积用含a,b的代数式表示为___.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知:如图,平面直角坐标系中,,,点C是x轴上一点,点D为OC的中点.
    (1)求证:BD∥AC;
    (2)若点C在x轴正半轴上,且BD与AC的距离等于2,求点C的坐标;
    (3)如果于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.
    15、(8分)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有一个ABC和一点O,ABC的顶点和点O均与小正方形的顶点重合.
    (1)在方格纸中,将ABC向下平移5个单位长度得到A1B1C1,请画出A1B1C1;
    (1)在方格纸中,将ABC绕点O旋转180°得到A1B1C1,请画出A1B1C1.
    (3)求出四边形BCOC1的面积
    16、(8分)如图,在△ABC 中,∠B=30°,∠C=45°,AC=2.求 BC 边上的高及△ABC 的面积.
    17、(10分)某公司对应聘者A,B,进行面试,并按三个方面给应聘者打分,每方面满分20分,最后打分结果如下表,
    根据实际需要,公司将专业知识、工作经验和仪表形象三项成绩得分按6:3:1的比例确定各人的成绩,此时谁将被录用?
    18、(10分)如图,已知ABC,利用尺规在AC边上求作点D,使AD=BD(保留作图痕迹,不写作法)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知点A(m,n),B(5,3)关于x轴对称,则m + n =______.
    20、(4分)一组数据:5,8,7,6,9,则这组数据的方差是_____.
    21、(4分)如图,的中位线,把沿折叠,使点落在边上的点处,若、两点之间的距离是,则的面积为______;
    22、(4分)计算=_____.
    23、(4分)如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,则D到AB的距离为____cm.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平行四边形ABCD中,DB=DA,∠ADB的平分线交AB于点F,交CB的延长线于点E,连接AE.
    (1)求证:四边形AEBD是菱形;
    (2)若DC=,EF:BF=3,求菱形AEBD的面积.
    25、(10分)请阅读下列材料:
    问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得,由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.
    请你参考小东同学的做法,解决如下问题:
    现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)
    26、(12分)先化简,再求值:(+)÷,其中x=﹣1.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    利用“两角对应相等的三角形是相似三角形”直接逐一进行判断即可
    【详解】
    (1)所有的等腰三角形,不能判断对应的角相等.所以错误;
    (2)所有的等腰直角三角形的三个角分别为:90°,45°,45°,故利用有两角对应相等的三角形相似,即可判定所有的等边三角形都相似,所以正确;
    (3)中可能是以底角和一顶角相等,所以错误;
    (4)顶角相等且为等腰三角形,即底角也相等,是相似三角形,所以正确;
    故(2)(4)正确,选择B
    本题考查相似三角形的判定,熟悉基础定理是解题关键
    2、D
    【解析】
    根据各象限内点的坐标特征解答即可.
    【详解】
    解:因为点在第四象限,且点到轴的距离是4,到轴的距离是3,
    所以点的坐标为,
    故选:.
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.
    3、B
    【解析】
    根据题意联立直角坐标系,再利用勾股定理即可求解.
    【详解】
    解:由题意可得:AO=4km,
    ∠AOB=30°,
    则AB=2,BO=,
    故A点坐标为:(﹣2,2).
    故选:B.
    此题主要考查直角坐标系的应用,解题的关键是根据题意作出直角坐标系进行求解.
    4、C
    【解析】
    根据最简二次根式的定义对各选项分析判断利用排除法求解.
    【详解】
    解:A、不是最简二次根式,错误;
    B、不是最简二次根式,错误;
    C、是最简二次根式,正确;
    D、不是最简二次根式,错误;
    故选:C.
    本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
    5、B
    【解析】
    作DE⊥y轴于E,根据三角函数值求得∠ACD=∠ACB=60°,即可求得∠DCE=60°,根据轴对称的性质得出CD=BC=2,从而求得CE=1,DE=,设A(m,2),则D(m+3,),根据系数k的几何意义得出k=2m=(m+3),求得m=3,即可得到结论.
    【详解】
    解:作轴于,
    ∵中,,,,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,,
    设,则,
    ∵,
    解得,
    ∴,
    故选B.
    本题考查了反比例函数图象上点的坐标特征,勾股定理等知识,求得∠DCE=60°是解题的关键.
    6、C
    【解析】
    根据随机事件和必然事件的定义分别进行判断.
    【详解】
    A. 3天内会下雨为随机事件,所以A选项错误;
    B. 打开电视机,正在播放广告,是随机事件,所以B选项错误;
    C. 367人中至少有2人公历生日相同是必然事件,所以C选项正确;
    D. a抛掷1个均匀的骰子,出现4点向上,是随机事件,所以D选项错误.
    故选C.
    此题考查随机事件,解题关键在于掌握其定义.
    7、C
    【解析】
    【分析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.
    【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,
    ∴不等式y1>y2的解集是﹣3<x<0或x>2,
    故选C.
    【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.
    8、B
    【解析】
    根据已知图形得出m+1=n且m+n=19,求得m、n的值,再根据x=19n﹣m可得答案.
    【详解】
    .解:由题意知,m+1=n且m+n=19,
    则m=9、n=10,
    ∴x=19×10﹣9=181,
    故选:B.
    本题主要考查图形及数的变化规律,解题的关键是通过观察图形分析总结出规律,再按规律求解.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、m=n
    【解析】
    根据“平均分的意义和平均分、总分之间的关系”进行分析解答即可.
    【详解】
    设初三(1)班这次英语考试中成绩高于平方分的有x人,低于平均分的有y人,等于平均分的有z人,则由题意可得:
    a(x+y+z)=(ax+m)+(ay-n)+az,
    ∴ax+ay+az=az+m+ay-n+az,
    ∴0=m-n,
    ∴m=n.
    故答案为:m=n.
    “能够根据:全班的总分=成绩高于平均分的同学的总得分+成绩低于平均分的同学的总得分+成绩等于平均分的同学的总得分得到等式a(x+y+z)=(ax+m)+(ay-n)+az”是解答本题的关键.
    10、1
    【解析】
    分式方程去分母转化为整式方程,根据分式方程有增根得到x-2=0,将x=2代入整式方程计算即可求出m的值.
    【详解】
    分式方程去分母得:x−1=m+2x−4,
    由题意得:x−2=0,即x=2,
    代入整式方程得:2−1=m+4−4,
    解得:m=1.
    故答案为:1.
    此题考查分式方程的增根,解题关键在于掌握分式方程中增根的意义.
    11、x≤
    【解析】
    ∵代数式在实数范围内有意义,
    ∴,解得:.
    故答案为:.
    12、32
    【解析】
    根据等腰三角形的性质以及平行线的性质得出AB∥AB∥AB,以及AB=2BA,得出AB=4BA=4,AB=8BA=8,AB=16BA…进而得出答案.
    【详解】
    ∵△ABA是等边三角形,
    ∴AB=AB,∠3=∠4=∠12=60°,
    ∴∠2=120°,
    ∵∠MON=30°,
    ∴∠1=180°−120°−30°=30°,
    又∵∠3=60°,
    ∴∠5=180°−60°−30°=90°,
    ∵∠MON=∠1=30°,
    ∴OA=AB=1,
    ∴AB=1,
    ∵△ABA、△BA是等边三角形,
    ∴∠11=∠10=60°,∠13=60°,
    ∵∠4=∠12=60°,
    ∴AB∥AB∥AB,
    ∴∠1=∠6=∠7=30°,∠5=∠8=90°,
    ∴AB=2BA, AB=4BA,
    ∴AB=4BA=4,
    AB=8BA=8,
    AB=16BA=16,
    以此类推:A B=32 BA=32.
    故答案为:32
    此题考查等边三角形的性质,含30度角的直角三角形,解题关键在于根据等腰三角形的性质以及平行线的性质得出AB∥AB∥AB
    13、
    【解析】
    根据三角形中位线定理,逐步得到小长方形的面积,得到规律即可求解.
    【详解】
    ∵菱形ABCD的对角线长分别为a、b,AC⊥BD,
    ∴S四边形ABCD=
    ∵以菱形ABCD各边的中点为顶点作矩形,根据中位线的性质可知
    S四边形A1B1C1D1=S四边形ABCD=

    则S四边形AnBnCnDn=S四边形ABCD=
    故四边形A2019B2019C2019D2019的面积用含a,b的代数式表示为.
    故填:.
    此题主要考查特殊平行四边形的性质,解题的关键是根据题意找到规律进行求解.
    三、解答题(本大题共5个小题,共48分)
    14、(1)BD∥AC;(2);(3)
    【解析】
    (1)由A与B的坐标求出OA与OB的长,进而得到B为OA的中点,而D为OC的中点,利用中位线定理即可得证;
    (2)如图1,作BF⊥AC于点F,取AB的中点G,确定出G坐标,由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理表示出OA,根据OA的长求出x的值,即可确定出C坐标;
    (3)如图2,当四边形ABDE为平行四边形时,AB∥DE,进而得到DE垂直于OC,再由D为OC中点,得到OE=CE,再由OE垂直于AC,得到三角形AOC为等腰直角三角形,求出OC的长,确定出C坐标,设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出AC解析式.
    【详解】
    (1),,
    ,,点B为线段OA的中点,
    点D为OC的中点,即BD为的中位线,

    (2)如图1,作于点F,取AB的中点G,则,
    ,BD与AC的距离等于2,

    在中,,,点G为AB的中点,

    是等边三角形,.

    设,则,
    根据勾股定理得:,


    点C在x轴的正半轴上,
    点C的坐标为;
    (3)如图2,当四边形ABDE为平行四边形时,,

    点D为OC的中点,




    点C在x轴的正半轴上,
    点C的坐标为,
    设直线AC的解析式为.
    将,得

    解得:.
    直线AC的解析式为.
    此题属于一次函数综合题,涉及的知识有:三角形中位线定理,坐标与图形性质,待定系数法求一次函数解析式,平行四边形的性质,等边三角形的性质,勾股定理,含30度直角三角形的性质,熟练掌握定理及性质是解本题的关键.
    15、(1)见解析;(1)见解析;(3)11.5
    【解析】
    无论是何种变换都需先找出各关键点的对应点,然后顺次连接即可.
    【详解】
    解:(1)如图:分别将A,B,C三点向下平移5各单位,得到A1,B1,C1,然后再顺次连接即可。
    (1)如图:分别将A,B,C三点绕点O旋转180°得到A1,B1,C1,然后再顺次连接即可。
    (3)四边形BCOC1的面积=△BCC1的面积+△COC1的面积=×5×4+×5×1=11.5
    本题考查了图形的平移和旋转以及图形的面积,其中关键是作出各个关键点的对应点.
    16、2,2+2.
    【解析】
    先根据AD⊥BC,∠C=45°得出△ACD是等腰直角三角形,再由AC=2 得出AD及CD的长,由∠B=30°求出BD的长,根据三角形的面积公式即可得出结论.
    【详解】
    ∵AD⊥BC,∠C=45°,
    ∴△ACD是等腰直角三角形,
    ∵AD=CD.
    ∵AC=2,
    ∴2AD=AC,即2AD=8,解得AD=CD=2.
    ∵∠B=30°,
    ∴AB=2AD=4,
    ∴BD= ,
    ∴BC=BD+CD=2 +2,
    ∴S = BC⋅AD= (2+2)×2=2+2.
    此题考查勾股定理,解题关键在于求出BD的长.
    17、B应被录用
    【解析】
    根据加权平均数计算A,B两名应聘者的最后得分,看谁的分数高,分数高的就录用.
    【详解】
    解:∵6:3:1=60%:30%:10%,
    ∴A的最后得分为,
    B的最后得分为,
    ∵16.7>15,
    ∴B应被录用.
    本题考查了加权平均数的概念,在本题中专业知识、工作经验、仪表形象的权重不同,因而不能简单地平均,而应将各人的各项成绩乘以权之后才能求出最后的得分.
    18、见解析
    【解析】
    根据尺规作线段垂直平分线的作法,作出AB的垂直平分线与AC的交点,即可.
    【详解】
    如图所示:
    ∴点D即为所求.
    本题主要考查线段的垂直平分线的尺规作图,熟练掌握线段的中垂线尺规作图的基本步骤,是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m=5,n=-3,代入可得到m + n的值.
    【详解】
    解:∵点A(m,n),B(5,3)关于x轴对称,
    ∴m=5,n=-3,
    即:m + n =1.
    故答案为:1.
    此题主要考查了关于x轴对称点的坐标特点,关键是掌握坐标变化规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;(1)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.
    20、2
    【解析】
    先求出平均数,然后再根据方差的计算公式进行求解即可.
    【详解】
    =7,
    =2,
    故答案为:2.
    本题考查了方差的计算,熟记方差的计算公式是解题的关键.
    21、40.
    【解析】
    根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.
    【详解】
    解:如图,连接AF,
    ∵DE为△ABC的中位线,
    ∴DE//BC,BC=2DE=10cm.
    由折叠的性质可得:,
    ∴,
    ∴.
    故答案是40.
    本题考查翻折变换(折叠问题), 三角形中位线定理.在三角形底已知的情况下要求三角形的面积,只需要求出它的高即可,本题解题关键是连接AF,证明AF为△ABC的高.
    22、2
    【解析】
    根据二次根式乘法法则进行计算.
    【详解】
    =.
    故答案是:2.
    考查了二次根式的乘法,解题关键是运用二次根式的乘法法则进行计算.
    23、2.1
    【解析】
    试题分析:先要过D作出垂线段DE,根据角平分线的性质求出CD=DE,再根据已知即可求得D到AB的距离的大小.
    解:过点D作DE⊥AB于E,
    ∵AD平分∠BAC,DE⊥AB,DC⊥AC
    ∴CD=DE
    又BD:DC=2:1,BC=7.8cm
    ∴DC=7.8÷(2+1)=7.8÷3=2.1cm.
    ∴DE=DC=2.1cm.
    故填2.1.
    点评:此题主要考查角平分线的性质;根据角平分线上的点到角的两边的距离相等进行解答,各角线段的比求出线段长是经常使用的方法,比较重要,要注意掌握.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)1.
    【解析】
    (1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据DB=DA可得结论;
    (2)先求出BF的长,再求出EF的长即可解决问题.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AD∥CE,
    ∴∠DAF=∠EBF,
    ∵∠AFD=∠EFB,AF=FB,
    ∴△AFD≌△BFE,
    ∴AD=EB,∵AD∥EB,
    ∴四边形AEBD是平行四边形,
    ∵BD=AD,
    ∴四边形AEBD是菱形.
    (2)∵四边形ABCD是平行四边形,
    ∴CD=AB=,
    ∵四边形AEBD是菱形,
    ∴AB⊥DE,AF=FB=,
    ∵EF:BF=3
    ∴EF=
    ∴DE=2EF=
    ∴S菱形AEBD=•AB•DE=××3=1.
    本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
    25、见解析.
    【解析】
    参考小东同学的做法,可得新正方形的边长为,由此可知新正方形的边长等于三个小正方形组成的矩形对角线的长.于是,画出分割线,拼出新正方形即可.
    【详解】
    解:所画图形如图所示.
    此题主要考查对正方形与三角形之间关系的灵活掌握.
    26、-5.
    【解析】
    括号内先通分进行分式加减法运算,然后再进行分式除法运算,化简后把x的值代入计算即可得.
    【详解】
    (+)÷
    =
    =
    =,
    当x=-1时,原式=-2-3=-5.
    本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.
    题号





    总分
    得分
    批阅人

    专业知识
    工作经验
    仪表形象
    A
    14
    18
    12
    B
    18
    16
    11

    相关试卷

    2024年湖南省株洲市茶陵县数学九年级第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2024年湖南省株洲市茶陵县数学九年级第一学期开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年上海民办日日学校九上数学开学学业水平测试试题【含答案】:

    这是一份2024-2025学年上海民办日日学校九上数学开学学业水平测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山西省灵石县数学九上开学学业水平测试试题【含答案】:

    这是一份2024-2025学年山西省灵石县数学九上开学学业水平测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map