|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年湖南省株洲市茶陵县数学九年级第一学期开学学业水平测试模拟试题【含答案】
    立即下载
    加入资料篮
    2024年湖南省株洲市茶陵县数学九年级第一学期开学学业水平测试模拟试题【含答案】01
    2024年湖南省株洲市茶陵县数学九年级第一学期开学学业水平测试模拟试题【含答案】02
    2024年湖南省株洲市茶陵县数学九年级第一学期开学学业水平测试模拟试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年湖南省株洲市茶陵县数学九年级第一学期开学学业水平测试模拟试题【含答案】

    展开
    这是一份2024年湖南省株洲市茶陵县数学九年级第一学期开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( )
    A.B.C.D.
    2、(4分)若分式的值为0,则x的值等于
    A.0B.3C.D.
    3、(4分)若直线经过第一、二、四象限,则化简的结果是 ( )
    A.2  kB.2  kC.k  2D.不能确定
    4、(4分)永康市某一周的最高气温统计如下单位::27,28,30,31,28,30,28,则这组数据的众数和中位数分别是
    A.28,27B.28,28C.28,30D.27,28
    5、(4分)已知两个直角三角形全等,其中一个直角三角形的面积为4,斜边为3,则另一个直角三角形斜边上的高为( )
    A.B.C.D.5
    6、(4分)如图,CD是△ABC的边AB上的中线,且CD=AB,则下列结论错误的是( )
    A.AD=BDB.∠A=30°C.∠ACB=90°D.△ABC是直角三角形
    7、(4分)如图,在菱形ABCD中,两对角线AC、BD交于点O,AC=8,BD=6,当△OPD是以PD为底的等腰三角形时,CP的长为( )
    A.2B.C.D.
    8、(4分)中国“一带一路”战略沿线国家和地区带来很大的经济效益,沿线某地区居民2017年人均收入为美元,预计2019年人均收入将达到美元,设2017年到2019年该地区居民年人均收入平均增长率为,可列方程为( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在矩形中,,点是的中点,将沿折叠后得到,点的对应点为点.(1)若点恰好落在边上,则______,(2)延长交直线于点,已知,则______.
    10、(4分)在盒子里放有三张分别写有整式a+1、a+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是_____.
    11、(4分)如图,在中,分别以点、为圆心,大于的长为半径作弧,两弧交于点、,作直线交于点,连接,若,,则与之间的函数关系式是___________.
    12、(4分)如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=_____.
    13、(4分)若反比例函数图象经过点A (﹣6,﹣3),则该反比例函数表达式是________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在矩形中,,,点从点出发向点运动,运动到点停止,同时,点从点出发向点运动,运动到点即停止,点、的速度都是每秒1个单位,连接、、.设点、运动的时间为秒
    (1)当为何值时,四边形是矩形;
    (2)当时,判断四边形的形状,并说明理由;
    15、(8分)如图,射线OA的方向是北偏东20°,射线OB的方向是北偏西40°,OD是OB的反向延长线,OC是∠AOD的平分线。
    (1)求∠DOC的度数;
    (2)求出射线OC的方向。
    16、(8分)解下列方程:
    (1); (2).
    17、(10分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE,
    (1)求证:四边形AEBD是矩形;
    (2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.
    18、(10分)一次函数(a为常数,且).
    (1)若点在一次函数的图象上,求a的值;
    (2)当时,函数有最大值2,请求出a的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,直线y=kx+b与直线y=2x交于点P(1,m),则不等式2x20、(4分)如图所示,在中,,在同一平面内,将绕点逆时针旋转到△的位置,使,则___.
    21、(4分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、1.已知这组数据的众数与平均数相等,那么这组数据的中位数是________.
    22、(4分)在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),若线段AB与x轴有交点,则m的取值范围是_____.
    23、(4分)如图,在矩形纸片中,,折叠纸片,使点落在边上的点处,折痕为,当点在边上移动时,折痕的端点,也随之移动,若限定点,分别在,边上移动,则点在边上可移动的最大距离为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)(1)解不等式组
    (2)已知A=
    ①化简A
    ②当x满足不等式组且x为整数时,求A的值.
    (3)化简
    25、(10分)如图,在□ABCD中,AC交BD于点O,点E,点F分别是OA,OC的中点。求证:四边形BEDF为平行四边形
    26、(12分)如图,在△ABC中,∠ACB=90°,AC=30cm,BC=40cm.点P从点A出发,以5cm/s的速度沿AC向终点C匀速移动.过点P作PQ⊥AB,垂足为点Q,以PQ为边作正方形PQMN,点M在AB边上,连接CN.设点P移动的时间为t(s).
    (1)PQ=______;(用含t的代数式表示)
    (2)当点N分别满足下列条件时,求出相应的t的值;①点C,N,M在同一条直线上;②点N落在BC边上;
    (3)当△PCN为等腰三角形时,求t的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    试题分析:根据一元一次不等式的解法解不等式x+1≤0,得x≤﹣1.
    表示在数轴上为:.
    故选D
    考点:不等式的解集
    2、C
    【解析】
    直接利用分式的值为0的条件以及分式有意义的条件进而得出答案.
    【详解】
    分式的值为0,
    ,,
    解得:,
    故选C.
    本题考查了分式的值为零的条件,熟知“分子为0且分母不为0时,分式的值为0”是解题的关键.
    3、B
    【解析】
    根据一次函数图像的性质,函数图像过一、二、四象限,则k<0.b>0.并考察了绝对值的性质.
    【详解】
    ∵直线y=kx+2经过第一、二、四象限,
    ∴k<0,
    ∴k-2<0,
    ∴|k-2|=2-k,
    故选B.
    本题考查了一次函数图像的性质,难点在于根据函数所过象限确定系数的值.
    4、B
    【解析】
    根据众数和中位数的意义进行分析.
    【详解】
    27,28,30,31,28,30,28,中28出现次数最多,28再中间,则这组数据的众数和中位数分别是28,28.
    故选:28,28.
    本题考核知识点:众数和中位数. 解题关键点:理解众数和中位数的意义.
    5、C
    【解析】
    先求出这个三角形斜边上的高,再根据全等三角形对应边上的高相等解答即可.
    【详解】
    解:设面积为4的直角三角形斜边上的高为h,则×3h=4,
    ∴h=,
    ∵两个直角三角形全等,
    ∴另一个直角三角形斜边上的高也为.
    故选:C.
    本题主要考查全等三角形对应边上的高相等的性质和三角形的面积公式,较为简单.
    6、B
    【解析】
    根据中线的定义可判断A正确;根据直角三角形斜边上的中线等于斜边的一半和等腰三角形等边对等角可判断C和D正确;根据已知条件无法判断B是否正确.
    【详解】
    解:∵CD是△ABC的边AB上的中线,
    ∴AD=BD,故A选项正确;
    又∵CD=AB,
    ∴AD=CD=BD,
    ∴∠A=∠ACD,∠B=∠BCD,
    ,故C选项正确;
    ∴△ABC是直角三角形,故D选项正确;
    无法判断∠A=30°,故B选项错误;
    故选:B.
    本题考查直角三角形斜边上的中线的性质,等腰三角形的性质,三角形内角和定理.熟记直角三角形斜边上的中线等于斜边的一半是解决此题的关键.
    7、C
    【解析】
    过O作OE⊥CD于E.根据菱形的对角线互相垂直平分得出OB,OC的长,AC⊥BD,再利用勾股定理列式求出CD,然后根据三角形的面积公式求出OE.在Rt△OED中,利用勾股定理求出ED.根据等腰三角形三线合一的性质得出PE ,利用CP=CD-PD即可得出结论.
    【详解】
    过O作OE⊥CD于E.
    ∵菱形ABCD的对角线AC、BD相交于点O,∴OBBD6=3,OA=OCAC3=2,AC⊥BD,由勾股定理得:CD1.
    ∵OC×OD=CD×OE,∴12=1OE,∴OE=2.2.在Rt△ODE中,DE===1.3.
    ∵OD=OP,∴PE=ED=1.3,∴CP=CD-PD=1-1.3-1.3=1.2=.
    故选C.
    本题考查了菱形的性质,等腰三角形的性质,勾股定理,求出OE的长是解题的关键.
    8、B
    【解析】
    用增长后的量=增长前的量×(1+增长率),如果设1017年到1019年该地区居民年人均收入平均增长率为x,那么根据题意可用x表示1019年年人均收入,然后根据已知可以得出关系式.
    【详解】
    设1017年到1019年该地区居民年人均收入平均增长率为x,那么根据题意得1019年年人均收入为:300(x+1)1,则
    1100=300(x+1)1.
    故选:B.
    考查了根据实际问题列二次函数关系式,对于平均增长率问题,一般形式为a(1+x)1=b,a为起始时间的有关数量,b为终止时间的有关数量.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、6 或
    【解析】
    (1)由矩形的性质得出,,由折叠的性质得出,由平行线的性质得出,推出,得出,即可得出结果;
    (2)①当点在矩形内时,连接,由折叠的性质得出,,,由矩形的性质和是的中点,得出,,,由证得,得出,由,得出,,,由勾股定理即可求出;
    ②当点在矩形外时,连接,由折叠的性质得出,,,由矩形的性质和是的中点,得出,,,由证得,得出,由,得出,由勾股定理得出:,即,即可求出.
    【详解】
    解:(1)四边形是矩形,
    ,,
    由折叠的性质可知,,如图1所示:




    是的中点,


    (2)①当点在矩形内时,连接,如图2所示:
    由折叠的性质可知,,,,
    四边形是矩形,是的中点,
    ,,,
    在和中,,



    ,,,

    ②当点在矩形外时,连接,如图3所示:
    由折叠的性质可知,,,,
    四边形是矩形,是的中点,
    ,,,
    在和中,,





    即:,

    解得:,(不合题意舍去),
    综上所述,或,
    故答案为(1)6;(2)或.
    本题考查了折叠的性质、矩形的性质、平行线的性质、勾股定理、全等三角形的判定与性质等知识,熟练掌握折叠的性质、证明三角形全等并运用勾股定理得出方程是解题的关键.
    10、.
    【解析】
    解:画树状图得:
    ∴一共有6种等可能的结果,把两张卡片上的整式分别作为分子和分母,能组成分式的有4个,
    ∴能组成分式的概率是
    故答案为.
    此题考查了列表法或树状图法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.
    11、
    【解析】
    由题意可判定PQ是AD的垂直平分线,根据线段垂直平分线的性质即得ED=EA,进一步可得∠A=∠ADE,再根据平行线的性质和平行四边形对角相等的性质即得结果.
    【详解】
    解:由题意可知,PQ是AD的垂直平分线,
    ∴ED=EA,
    ∴∠A=∠ADE,
    ∵四边形ABCD是平行四边形,
    ∴∠A=∠C=x°,AB∥CD,
    ∴∠A+∠ADC=180°,
    即,
    ∴.
    故答案为.
    本题考查了对尺规作线段垂直平分线的理解和线段垂直平分线的性质以及平行四边形的性质,解题的关键是由作图语言正确判断PQ是AD的垂直平分线.
    12、22.5°
    【解析】
    根据正方形的对角线平分一组对角求出∠CBE=45°,再根据等腰三角形两底角相等求出∠BCE=67.5°,然后根据∠DCE=∠BCD-∠BCE计算即可得解.
    【详解】
    ∵四边形ABCD是正方形,
    ∴∠CBE=45°,∠BCD=90°,
    ∵BE=BC,
    ∴∠BCE=(180°-∠BCE)=×(180°-45°)=67.5°,
    ∴∠DCE=∠BCD-∠BCE=90°-67.5°=22.5°.
    故答案为22.5°.
    本题考查了正方形的性质,等腰三角形的性质,主要利用了正方形的对角线平分一组对角,需熟记.
    13、y=18/x
    【解析】
    函数经过一定点,将此点坐标代入函数解析式y=(k≠0)即可求得k的值.
    【详解】
    设反比例函数的解析式为y=(k≠0),函数经过点A(-6,-3),
    ∴-3=,得k=18,
    ∴反比例函数解析式为y=.
    故答案为:y=.
    此题比较简单,考查的是用待定系数法求反比例函数的解析式.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)当时,四边形为菱形,理由见解析.
    【解析】
    (1)由矩形性质得出,,由已知可得,,,当时,四边形为矩形,得出方程,解方程即可;
    (2)时,,,得出,,,,四边形为平行四边形,在中,与勾股定理求出,得出,即可得出结论.
    【详解】
    解:(1)在矩形中,,,
    ,,
    由已知可得,,,
    在矩形中,,,
    当时,四边形为矩形,

    解得:,
    当时,四边形为矩形;
    (2)四边形为菱形;理由如下:

    ,,
    ,,
    ,,
    四边形为平行四边形,
    在中,,

    平行四边形为菱形,
    当时,四边形为菱形;
    本题考查了矩形的判定与性质、菱形的判定、勾股定理、平行四边形的判定等知识;熟练掌握判定与性质是解题的关键.
    15、(1)60°;(2)80°;
    【解析】
    (1)先求出∠AOB=60°,再求得∠AOD的度数,由角平分线得出∠AOC的度数,得出∠DOC的度数;(2)由(1)即可确定OC的方向.
    【详解】
    (1)∵OB的方向是北偏西40°,OA的方向是北偏东20°,
    ∴∠AOB=40°+20°=60°,
    ∴∠AOD=180°−60°=120°,
    ∵OC是∠AOD的平分线,
    ∴∠AOC=60°,
    ∴∠DOC=180°−(60°+60°)=60°;
    (2)由(1)可知OC的方向为:20°+60°=80°,
    ∴射线OC的方向是北偏东80°.
    此题考查方向角,解题关键在于掌握其定义.
    16、(1)x=−4;(2)
    【解析】
    (1)利用解分式方程的一般步骤解出方程;
    (2)利用配方法解出一元二次方程.
    【详解】
    解:(1)
    方程两边同乘(x−2),得2x+2=x−2
    解得,x=−4,
    检验:当x=−4时,x−2=−6≠0,
    ∴x=−4是原方程的解;
    (2)x2−6x+6=0
    ∴x2−6x=−6
    ∴x2−6x+9=−6+9
    ∴(x−3)2=3
    ∴x−3=
    解得:.
    本题考查的是分式方程的解法、一元二次方程的解法,掌握解分式方程的一般步骤、配方法解一元二次方程的一般步骤是解题的关键.
    17、解:(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
    ∴四边形AEBD是平行四边形.
    ∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC.
    ∴∠ADB=90°.
    ∴平行四边形AEBD是矩形.
    (2)当∠BAC=90°时,矩形AEBD是正方形.理由如下:
    ∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD.
    ∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.
    【解析】
    试题分析:(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;
    (2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.
    (1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
    ∴四边形AEBD是平行四边形,
    ∵AB=AC,AD是∠BAC的角平分线,
    ∴AD⊥BC,
    ∴∠ADB=90°,
    ∴平行四边形AEBD是矩形;
    (2)当∠BAC=90°时,
    理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,
    ∴AD=BD=CD,
    ∵由(1)得四边形AEBD是矩形,
    ∴矩形AEBD是正方形.
    18、(1);(2)或.
    【解析】
    (1))把代入即可求出a;
    (2)分①时和②时根据函数值进行求解.
    【详解】
    解:(1)把代入得,解得;
    (2)①时,y随x的增大而增大,
    则当时,y有最大值2,把,代入函数关系式得,解得;
    ②时,y随x的增大而减小,
    则当时,y有最大值2,把代入函数关系式得,解得,所以或.
    此题主要考查一次函数的图像,解题的关键是根据题意分情况讨论.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、x<1
    【解析】
    根据两直线的交点坐标和函数的图象即可求出答案.
    【详解】
    ∵直线y1=kx+b与直线y2=2x交于点P(1,m),
    ∴不等式2x<kx+b的解集是x<1,
    故答案是:x<1.
    考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    20、40°
    【解析】
    由旋转性质可知,,从而可得出为等腰三角形,且和已知,得出的度数.则可得出答案.
    【详解】
    解:绕点逆时针旋转到△的位置
    本题考查了旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解题的关键是抓住旋转变换过程中不变量,判断出是等腰三角形.
    21、2
    【解析】
    根据题意先确定x的值,再根据中位数的定义求解.
    【详解】
    解:当x=1或12时,有两个众数,而平均数只有一个,不合题意舍去.
    当众数为2,根据题意得:
    解得x=2,
    将这组数据从小到大的顺序排列1,2,2,2,12,
    处于中间位置的是2,
    所以这组数据的中位数是2.
    故答案为2.
    本题主要考查了平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.
    22、﹣2≤m≤1
    【解析】
    由点的坐标特征得出线段AB∥y轴,当直线y=1经过点A时,得出m=1;当直线y=1经过点B时,得出m=﹣2;即可得出答案.
    【详解】
    解:∵点A、B的坐标分别为(3,m)、(3,m+2),
    ∴线段AB∥y轴,
    当直线y=1经过点A时,则m=1,
    当直线y=1经过点B时,m+2=1,则m=﹣2;
    ∴直线y=1与线段AB有交点,则m的取值范围为﹣2≤m≤1;
    故答案为﹣2≤m≤1.
    本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
    23、1
    【解析】
    分别利用当点M与点A重合时,以及当点N与点C重合时,求出AH的值进而得出答案.
    【详解】
    解:如图1,当点M与点A重合时,根据翻折对称性可得AH=AD=5,
    如图2,当点N与点C重合时,根据翻折对称性可得CD=HC=13,
    在Rt△HCB中,HC2=BC2+HB2,即132=(13-AH)2+52,
    解得:AH=1,
    所以点H在AB上可移动的最大距离为5-1=1.
    故答案为:1.
    本题主要考查的是折叠的性质、勾股定理的应用,注意利用翻折变换的性质得出对应线段之间的关系是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、 (1) x≤1;(2) ,1;(3) .
    【解析】
    (1)根据解不等式组的方法可以解答本题;
    (2)①根据分式的减法可以化简A;
    ②根据不等式组和原分式可以确定x的值,然后代入化简后A的值即可解答本题;
    (3)根据分式的减法可以化简题目中的式子.
    【详解】
    解:(1)
    由不等式①,得
    x≤1,
    由不等式②,得
    x<4,
    故原不等式组的解集为x≤1;
    (2)①A=,
    ②由不等式组,得
    1≤x<3,
    ∵x满足不等式组且x为整数,(x﹣1)(x+1)≠0,
    解得,x=2,
    当x=2时,A
    (3)

    本题考查分式的化简求值、解一元一次不等式,解答本题的关键是明确分式化简求值的方法和解不等式组的方法.
    25、见解析;
    【解析】
    欲证明四边形BFDE是平行四边形只要证明OE=OF,OD=OB.
    【详解】
    证明:∵四边形ABCD是平行四边形
    ∴AO=CO,BO=DO .
    又∵点E,点F分别是OA,OC的中点
    ∴EO=,FO=
    ∴EO=FO
    ∴四边形BEDF为平行四边形
    本题考查了平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质.
    26、(1)4t;(2)①,②;(3)秒或秒或秒.
    【解析】
    (1)先求出AB=50,sinA==,csA==,进而求出AQ=3t,PQ=4t,即可得出结论;
    (2)先判断出PN=QM=PQ=4t,
    ①求出CD=24,AD=18,进而判断出AQ+QM=AD=18,建立方程即可得出结论;
    ②判断出∠APQ=∠PNC,进而得出△AQP∽△PCN,建立方程即可得出结论;
    (3)分三种情况,利用等腰三角形的性质建立方程求解即可得出结论.
    【详解】
    解:(1)在Rt△ABC中,根据勾股定理得,AB=50,
    ∴sinA==,csA==
    ∵PQ⊥AB,
    ∴∠AQP=90°,
    由运动知,AP=5t,
    在Rt△AQP中,AQ=AP•csA=×5=3t,PQ=AP•sinA=4t,
    故答案为:4t;
    (2)由(1)知,AQ=3t,PQ=4t,
    ∵四边形PQMN是正方形,
    ∴PN=QM=PQ=4t,
    ①如图1,
    由(1)知,AB=50,
    过点C作CD⊥AB于D,
    ∴AB•CD=AC•BC,
    ∴CD=24,
    在Rt△ADQ中,AD==18,
    ∵点C,N,M在同一条直线上,
    ∴点M落在点D,
    ∴AQ+QM=AD=18,
    由(1)知,QM=PQ=4t,AQ=3t,
    ∴4t+3t=18,
    ∴t=;
    ②点N落在BC上时,∠PCN=∠PCB=90°=∠AQP,
    ∴∠CPN+∠CNP=90°,
    ∵∠QPN=90°
    ∴∠CPN+∠APQ=90°,
    ∴∠APQ=∠PNC,
    ∵∠AQP=∠PCN,
    ∴△AQP∽△PCN,
    ∴,
    ∴,
    ∴t=;
    (3)当PC=PN时,30-5t=4t,
    ∴t=,
    当PC=NC时,如图2,过点C作CF⊥PN于F,延长CF交AB于D,
    ∴PF=PN=2t,
    ∴QD=2t,
    根据勾股定理得,AQ==3t,
    ∴AD=AQ+QD=5t=18,
    ∴t=,
    当PN=NC时,如图3,过点N作NG⊥AC于G,
    ∴PG=PC=,
    易知,△PNG∽△APQ,
    ∴,
    ∴,
    ∴t=,
    即:当△PCN是等腰三角形时,秒或秒或秒.
    此题是四边形综合题,主要考查了正方形的性质,相似三角形的性质和判定,勾股定理,锐角三角函数,用方程的思想解决问题是解本题的关键.
    题号





    总分
    得分
    批阅人
    相关试卷

    2024-2025学年湖南省周南石燕湖中学数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年湖南省周南石燕湖中学数学九年级第一学期开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖南省永州市冷水滩区数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年湖南省永州市冷水滩区数学九年级第一学期开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,四象限D.当时,随的增大而减小,解答题等内容,欢迎下载使用。

    2024-2025学年湖南省茶陵县九年级数学第一学期开学学业水平测试试题【含答案】: 这是一份2024-2025学年湖南省茶陵县九年级数学第一学期开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map