|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖北省孝感汉川市2024-2025学年数学九年级第一学期开学综合测试试题【含答案】
    立即下载
    加入资料篮
    湖北省孝感汉川市2024-2025学年数学九年级第一学期开学综合测试试题【含答案】01
    湖北省孝感汉川市2024-2025学年数学九年级第一学期开学综合测试试题【含答案】02
    湖北省孝感汉川市2024-2025学年数学九年级第一学期开学综合测试试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省孝感汉川市2024-2025学年数学九年级第一学期开学综合测试试题【含答案】

    展开
    这是一份湖北省孝感汉川市2024-2025学年数学九年级第一学期开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)数据2,3,5,5,4的众数是( ).
    A.2B.3C.4D.5
    2、(4分)计算的结果等于( )
    A.B.C.D.
    3、(4分)要使分式有意义,则的取值范围是( )
    A.B.C.D.
    4、(4分)如图,在平面直角坐标系中,一次函数的图象与轴、轴分别相交于点,,点的坐标为,且点在的内部,则的取值范围是( )
    A.B.C.D.或
    5、(4分)下列式子中,不可以取1和2的是( )
    A.B.C.D.
    6、(4分)如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省( )元.
    A.4B.5C.6D.7
    7、(4分)计算的结果是
    A.﹣3B.3C.﹣9D.9
    8、(4分)不等式组的解集在数轴上表示正确的是( )
    A. B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,矩形中,是上一点(不与重合),点在边上运动,分别是的中点,线段长度的最大值是__________.
    10、(4分)如图,在矩形ABCD中,已知AB=3,BC=4,则BD=________.
    11、(4分)如图,在矩形中,,过矩形的对角线交点作直线分别交、于点,连接,若是等腰三角形,则____.
    12、(4分)如图,▱ABCD的对角线AC、BD相交于点O,点E是CD的中点;若AD=8cm,则OE的长为_______.
    13、(4分)如图,平分,,,则______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某市现在有两种用电收费方法:
    小明家所在的小区用的电表都换成了分时电表.
    解决问题:
    (1)小明家庭某月用电总量为千瓦·时(为常数);谷时用电千瓦·时,峰时用电千瓦·时,分时计价时总价为元,普通计价时总价为元,求,与用电量的函数关系式.
    (2)小明家庭使用分时电表是不是一定比普通电表合算呢?
    (3)下表是路皓家最近两个月用电的收据:
    根据上表,请问用分时电表是否合算?
    15、(8分)如图,在□ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,BE,CF相交于点G.
    (1)求证:BE⊥CF;
    (2)若AB=a,CF=b,写出求BE的长的思路.
    16、(8分)已知:如图,在△ABC中,D是AC上一点,,△BCD的周长是24cm.
    (1)求△ABC的周长;
    (2)求△BCD与△ABD的面积比.
    17、(10分)如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A、B两点,AB=5,OA:OB =3:4.
    (1)求直线l的表达式;
    (2)点P是轴上的点,点Q是第一象限内的点.若以A、B、P、Q为顶点的四边形是菱形,请直接写出Q点的坐标.
    18、(10分)解方程
    (1)
    (2)
    (3)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一个正数的平方根分别是x+1和x﹣3,则这个正数是____________
    20、(4分)周末,小李从家里出发骑车到少年宫学习绘画,学完后立即回家,他离家的距离y(km)与时间x(h)之间的函数关系如图所示,有下列结论:①他家离少年宫30km;②他在少年宫一共停留了3h;③他返回家时,离家的距离y(km)与时间x(h)之间的函数表达式是y=-20x+110;④当他离家的距离y=10时,时间x=.其中正确的是________(填序号).
    21、(4分)不等式 的解集为________.
    22、(4分)已知一组数据6,6,1,x,1,请你给正整数x一个值_____,使这组数据的众数为6,中位数为1.
    23、(4分)要使在实数范围内有意义,a 应当满足的条件是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,,分别以为圆心,以长度5为半径作弧,两条弧分别相交于点和,依次连接,连接交于点.
    (1)判断四边形的形状并说明理由
    (2)求的长.
    25、(10分)8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).
    根据图表信息,回答问题:
    (1)直接写出表中,,,的值;
    (2)用方差推断, 班的成绩波动较大;用优秀率和合格率推断, 班的阅读水平更好些;
    (3)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些。你认为谁的推断比较科学合理,更客观些,为什么?
    26、(12分)已知,如图,在ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.
    (1)求证:△AEM≌△CFN;
    (2)求证:四边形BMDN是平行四边形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.
    【详解】
    解:∵1是这组数据中出现次数最多的数据,
    ∴这组数据的众数为1.
    故选:D.
    本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.
    2、D
    【解析】
    利用乘法法则计算即可求出值
    【详解】
    解:原式=-54,
    故选D.
    此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.
    3、C
    【解析】
    根据分式有意义的条件,即可解答.
    【详解】
    分式有意义的条件是:分母不等于零,a-4≠0,

    所以选C.
    此题考查分式有意义的条件,解题关键在于掌握其定义.
    4、A
    【解析】
    先根据函数解析式求出点A、B的坐标,再根据题意得出,,解不等式组即可求得.
    【详解】
    函数,
    ,,
    点在的内部,
    ,,

    故选:.
    本题考查了一次函数图象上点的坐标特征,掌握函数与坐标轴的特征及依据题意列出不等式是解题的关键.
    5、D
    【解析】
    根据二次根式有意义的条件即可求出答案.
    【详解】
    A.中a≥0,所以a可以取1和2,故选项A不符合题意;
    B.中,即a≥1或a≤-1,所以a可以取1和2,故选项B不符合题意;
    C.中,-a+3≥0,即a≤3,所以a可以取1和2,故选项C不符合题意;
    D,当a取1和2时,二次根式无意义,故选项D符合题意.
    故选D.
    本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件.
    6、C
    【解析】
    观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式,再分别求出当x=1和x=5时,y值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.
    【详解】
    解:设y关于x的函数关系式为y=kx+b,
    当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,
    ,解得:,
    ∴y=10x(0≤x≤2);
    当x>2时,将(2,20),(4,36)代入y=kx+b中,
    ,解得:,
    ∴y=8x+4(x≥2).
    当x=1时,y=10x=10,
    当x=5时,y=44,
    10×5-44=6(元),
    故选C.
    本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.
    7、B
    【解析】
    利用二次根式的性质进行化简即可.
    【详解】
    =|﹣3|=3.
    故选B.
    8、C
    【解析】
    先求出不等式②的解集,然后根据:同大取大,同小取小,大小小大取中间,大大小小无解确定出不等式组的解集即可.
    【详解】

    解②得,
    x≤3,
    ∴不等式组的解集是-2在数轴上表示为:
    故选C.
    本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、5
    【解析】
    根据矩形的性质求出AC,然后求出AP的取值范围,再根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AP.
    【详解】
    解:∵矩形ABCD中,AB=6,BC=8 ,
    ∴对角线AC=10,
    ∵P是CD边上的一动点,
    ∴8≤AP≤10,
    连接AP,
    ∵M,N分别是AE、PE的中点,
    ∴MN是△AEP的中位线,
    ∴, MN=AP.
    ∴MN最大长度为5.
    本题考查了矩形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质以及定理并求出AP的取值范围是解题的关键.
    10、1
    【解析】
    先由矩形的性质求出CD= AB=3,再根据勾股定理可直接算出BD的长度.
    【详解】
    ∵四边形ABCD是菱形,
    ∴CD= AB=3,
    由勾股定理可知,BD==1.
    故答案为1.
    本题主要考查了矩形的性质,勾股定理的知识点,熟练掌握勾股定理是解答本题的关键.
    11、或
    【解析】
    连接AC,由矩形的性质得出∠B=90°,AD=BC=6,OA=OC,AD∥BC,由ASA证明△AOE≌△COF,得出AE=CF,若△AEF是等腰三角形,分三种情讨论:
    ①当AE=AF时,设AE=AF=CF=x,则BF=6-x,在Rt△ABF中,由勾股定理得出方程,解方程即可;
    ②当AF=EF时,作FG⊥AE于G,则AG=AE=BF,设AE=CF=x,则BF=6-x,AG=x,得出方程x=6-x,解方程即可;
    ③当AE=FE时,作EH⊥BC于H,设AE=FE=CF=x,则BF=6-x,CH=DE=6-x,求出FH=CF-CH=2x-6,在Rt△EFH中,由勾股定理得出方程,方程无解;即可得出答案.
    【详解】
    解:连接AC,如图1所示:
    ∵四边形ABCD是矩形,
    ∴∠B=90°,AD=BC=6,OA=OC,AD∥BC,
    ∴∠OAE=∠OCF,
    在△AOE和△COF中,

    ∴△AOE≌△COF(ASA),
    ∴AE=CF,若△AEF是等腰三角形,分三种情讨论:
    ①当AE=AF时,如图1所示:
    设AE=AF=CF=x,则BF=6-x,
    在Rt△ABF中,由勾股定理得:12+(6-x)2=x2,
    解得:x=,
    即AE=;
    ②当AF=EF时,
    作FG⊥AE于G,如图2所示:
    则AG=AE=BF,
    设AE=CF=x,则BF=6-x,AG=x,
    所以x=6-x,
    解得:x=1;
    ③当AE=FE时,作EH⊥BC于H,如图3所示:
    设AE=FE=CF=x,则BF=6-x,CH=DE=6-x,
    ∴FH=CF-CH=x-(6-x)=2x-6,
    在Rt△EFH中,由勾股定理得:12+(2x-6)2=x2,
    整理得:3x2-21x+52=0,
    ∵△=(-21)2-1×3×52<0,
    ∴此方程无解;
    综上所述:△AEF是等腰三角形,则AE为或1;
    故答案为:或1.
    本题考查了矩形的性质、全等三角形的判定与性质、勾股定理、解方程、等腰三角形的性质、分类讨论等知识;根据勾股定理得出方程是解决问题的关键,注意分类讨论.
    12、4cm
    【解析】
    先说明OE是△ACD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.
    【详解】
    ∵▱ABCD的对角线AC、BD相交于点O,
    ∴OA=OC,
    ∵点E是CD的中点,
    ∴CE=DE,
    ∴OE是△ACD的中位线,
    ∵AD=8cm,
    ∴OE=AD=×8=4cm,
    故答案为:4cm.
    本题考查了平行四边形的性质,三角形中位线定理,熟练掌握相关的性质定理是解题的关键.
    13、50
    【解析】
    由平分,可求出∠BDE的度数,根据平行线的性质可得∠ABD=∠BDE.
    【详解】
    解:∵,
    ∴∠ADE=180°-80°=100°,
    ∵平分,
    ∴∠BDE=∠ADE=50°,
    ∵,
    ∴∠ABD=∠BDE=50°.
    故答案为:50.
    本题考查平行线的性质与角平分线的定义.此题比较简单,解题的关键是注意掌握两直线平行,内错角相等定理的应用,注意数形结合思想的应用.
    三、解答题(本大题共5个小题,共48分)
    14、(1)y1=0.35x+0.55(a-x),y2=0.52a;(2)当x>时,使用分时电表比普通电表合算;当x=时,两种电表费用相同;当x<时,使用普通电表比普通电表合算;(3)用分时电表更合算.
    【解析】
    (1)根据题意解答即可;
    (2)根据题意列不等式解答即可;
    (3)根据(1)的结论解答即可.
    【详解】
    解:(1)根据题意得:y1=0.35x+0.55(a-x),y2=0.52a;
    (2)小明家庭使用分时电表不一定比普通电表合算.
    当y1<y2,即0.35x+0.55(a-x)<0.52a,解得x>,
    即x>时,使用分时电表比普通电表合算;
    当y1=y2,即0.35x+0.55(a-x)=0.52a,解得x=,
    即x=时,两种电表费用相同;
    当y1>y2,即0.35x+0.55(a-x)>0.52a,解得x<,
    即x<时,使用普通电表比普通电表合算;
    (3)用分时电表的费用为:0.35×181+0.55×239=194.8(元);
    使用普通电表的费用为:0.52×(181+239)=218.4(元).
    所以用分时电表更合算.
    本题主要考查了一次函数与一元一次不等式的运用,解答时求出一次函数的解析式是关键.
    15、 (1)见解析;(2)见解析.
    【解析】
    【分析】(1)由平行四边形性质得AB∥CD, 可得∠ABC+∠BCD=180°,又BE,CF分别是∠ABC,∠BCD的平分线,所以∠EBC+∠FCB=90°,可得∠BGC=90°;
    (2)作EH∥AB交BC于点H,连接AH交BE于点P.证四边形ABHE是菱形,可知AH,BE互相垂直平分,在Rt△ABP中,由勾股定理可求BP,进而可求BE的长.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD.
    ∴∠ABC+∠BCD=180°.
    ∵BE,CF分别是∠ABC,∠BCD的平分线,
    ∴∠EBC=∠ABC,∠FCB=∠BCD.
    ∴∠EBC+∠FCB=90°.
    ∴∠BGC=90°.
    即BE⊥CF.
    (2)求解思路如下:
    a.如图,作EH∥AB交BC于点H,连接AH交BE于点P.
    b.由BE平分∠ABC,可证AB=AE,进而可证四边形ABHE是菱形,可知AH,BE互相垂直平分;
    c.由BE⊥CF,可证AH∥CF,进而可证四边形AHCF是平行四边形,可求AP=;
    d.在Rt△ABP中,由勾股定理可求BP,进而可求BE的长.
    【点睛】本题考核知识点:平行四边形,菱形. 解题关键点:熟记平行四边形和菱形的性质和判定.
    16、 (1)36cm;(2)
    【解析】
    试题分析:(1)根据相似三角形的周长的比等于相似比进行计算即可;
    (2)根据相似三角形的面积的比等于相似比的平方进行计算即可.
    试题解析:(1) ∵,
    ∴∽

    ∵的周长是cm
    ∴的周长是
    (2) ∵∽


    17、(1)y=+4 (2)(3,5)或(3,)
    【解析】
    (1)首先根据已知条件以及勾股定理求得OA、OB的长度,即求得A、B的坐标,利用待定系数法即可求解;
    (2)分P在B点的上边和在B的下边两种情况画出图形进行讨论,求得Q的坐标.
    【详解】
    (1)∵OA:OB=3:4,AB=5,
    ∴根据勾股定理,得OA=3,OB=4,
    ∵点A、B在x轴、y轴上,
    ∴A(3,0),B(0,4),
    设直线l表达式为y=kx+b(k≠0),
    ∵直线l过点A(3,0),点B(0,4),
    ∴ ,
    解得 ,
    ∴直线l的表达式为y=+4;
    (2)如图,当四边形BP1AQ1是菱形时,则有BP1=AP1=AQ1,
    则有OP1=4-BP1,
    在Rt△AOP1中,有AP12=OP12+AO2,
    即AQ12=(4-AQ1)2+32,
    解得:AQ1=,所以Q1的坐标为(3,);
    当四边形BP2Q2A是菱形时,则有BP2 =AQ2=AB=5,
    所以Q2的坐标为(3,5),
    综上所述,Q点的坐标是(3,5)或(3,).
    本题考查了一次函数的性质、勾股定理、菱形的判定与性质,熟练掌握待定系数法、运用分类讨论与数形结合思想是解题的关键.
    18、(1) (2) (3)
    【解析】
    (1)运用直接开平方法;(2)运用配方法;(3)运用公式法.
    【详解】
    解(1)
    (2)
    所以
    (3)
    因为a=1,b=-4,c=-7

    所以,

    所以
    考核知识点:解一元二次方程.掌握各种方法是关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据正数的两个平方根互为相反数列出关于x的方程,解之可得.
    【详解】
    根据题意知x+1+x-3=0,
    解得:x=1,
    ∴x+1=2
    ∴这个正数是22=1
    故答案为:1.
    本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.
    20、①②③
    【解析】
    分析:根据图象能够理解离家的距离随时间的变化情况进行判断即可.
    详解:①他家离少年宫=30km,正确;
    ②他在少年宫一共停留了4﹣1=3个小时,正确;
    ③他返回家时,y(km)与时间x(h)之间的函数表达式是y=﹣20x+110,正确;
    ④当他离家的距离y=10km时,时间x=5(h)或x==(h),错误.
    故答案为:①②③.
    点睛:本题考查了一次函数的应用,根据图象能够理解离家的距离随时间的变化情况,是解决本题的关键.
    21、
    【解析】
    首先去分母,再系数化成1即可;
    【详解】
    解:去分母得: -x≥3
    系数化成1得: x≤-3
    故答案为:x≤-3
    本题考查了解一元一次不等式,主要考查学生的计算能力.
    22、2
    【解析】
    由数据1、1、6、6、x的众数为6、中位数为1知x<1且x≠1,据此可得正整数x的值.
    【详解】
    ∵数据1、1、6、6、x的众数为6、中位数为1,
    ∴x<1且x≠1,
    则x可取2、3、4均可,
    故答案为2.
    考查了中位数、众数的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
    23、a⩽3.
    【解析】
    根据二次根式有意义的条件列出关于a的不等式,求出a的取值范围即可.
    【详解】
    ∵在实数范围内有意义,
    ∴3−a⩾0,
    解得a⩽3.
    故答案为:a⩽3.
    此题考查二次根式有意义的条件,解题关键在于掌握其有意义的条件.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析(2)6
    【解析】
    (1)利用作法得到四边相等,从而可判断四边形ABCD为菱形;
    (2)根据菱形的性质得OA=OC=4,OB=OD,AC⊥BD,然后利用勾股定理计算出OB,从而得到BD的长
    【详解】
    (1)由图可知,垂直平分,且
    所以,四边形为菱形.
    (2)因为且平分.
    在中,
    的长为6.
    此题考查菱形的判定,垂直平分线的应用,解题关键在于得到四边相等
    25、(1);(2)二;一;(3)乙,理由见解析.
    【解析】
    (1)求出一班的成绩总和除以人数即可得出一班的平均分;观察图即可得出一班众数;把二班的成绩按照从小到大的顺序排列,即可得到二班的中位数;用二班合格的人数除以二班总人数即可得到二班的合格率;
    (2)利用方差、优秀率、合格率的意义下结论即可;
    (3)从平均数、众数、中位数对整体数据影响的情况考虑分析即可.
    【详解】
    解:(1)通过观察图中数据可得:


    二班共有:人,
    ∵图中数据已经按照从小到大的顺序排列,
    ∴中位数为20、21的平均数,即:;
    二班合格的人数有:人,总人数为40人,
    ∴,
    故答案为:;
    (2)一班方差为:2.11,二班方差为4.28,∴二班的成绩波动较大,
    一班优秀率为20%,合格率为92.5%,二班的优秀率为10%,合格率为85%,∴一班的阅读水平更好些;
    故答案为:二;一;
    (3)乙同学的说法较合理,
    平均分受极端值的影响,众数、中位数则是反映一组数据的集中趋势和平均水平,因此用众数和中位数进行分析要更加客观,二班的众数和中位数都比一班的要好,因此乙同学推断比较科学合理,更客观.
    本题考查了众数、中位数、方差的意义及各个统计量反映数据的特征,准确把握各个统计量的意义是解决此类题目的关键.
    26、证明见解析
    【解析】
    (1)根据平行四边形的性质可得出AD∥BC,∠DAB=∠BCD,再根据平行线的性质及补角的性质得出∠E=∠F,∠EAM=∠FCN,从而利用ASA可作出证明.
    (2)根据平行四边形的性质及(1)的结论可得BMDN,则由有一组对边平行且相等的四边形是平行四边形即可证明.
    【详解】
    证明:(1) ∵四边形ABCD是平行四边形,∴AB∥DC ,AD∥BC.
    ∴∠E=∠F,∠DAB=∠BCD.
    ∴∠EAM=∠FCN.
    又∵AE=CF
    ∴△AEM≌△CFN(ASA).
    (2) ∵由(1)△AEM≌△CFN
    ∴AM=CN.
    又∵四边形ABCD是平行四边形
    ∴ABCD
    ∴BMDN.
    ∴四边形BMDN是平行四边形.
    题号





    总分
    得分
    批阅人
    分时电表
    普通电表
    峰时(8:00~21:00)
    谷时(21:00到次日8:00)
    电价0.55元/千瓦·时
    电价0.35元/千瓦·时
    电价0.52元/千瓦·时
    谷时用电(千瓦·时)
    峰时用电(千瓦·时)
    181
    239
    班级
    平均分
    方差
    中位数
    众数
    合格率
    优秀率
    一班
    2.11
    7
    92.5%
    20%
    二班
    6.85
    4.28
    8
    10%
    相关试卷

    湖北省孝感市汉川市2025届九年级数学第一学期开学达标测试试题【含答案】: 这是一份湖北省孝感市汉川市2025届九年级数学第一学期开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届湖北省孝感汉川市九上数学开学监测试题【含答案】: 这是一份2025届湖北省孝感汉川市九上数学开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖北省孝感市汉川市部分学校2024-2025学年九年级上学期月考数学试卷: 这是一份湖北省孝感市汉川市部分学校2024-2025学年九年级上学期月考数学试卷,共4页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map