湖北省武汉市华师一附中2024-2025学年九年级数学第一学期开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )
A.16B.16C.8D.8
2、(4分)下列根式中与是同类二次根式的是( )
A.B.C.D.
3、(4分)将下列多项式分解因式,结果中不含因式x+1的是( )
A.x2−1 B.x2−2x+1 C.x(x−2)+(x−2) D.x2+2x+1
4、(4分)已知点都在直线y=3x+b上,则的值的大小关系是( )
A.B.C.D.
5、(4分)一次函数的图象大致是( )
A.B.C.D.
6、(4分)对四边形ABCD添加以下条件,使之成为平行四边形,正面的添加不正确的是( )
A.AB∥CD,AD=BCB.AB=CD,AB∥CD
C.AB=CD,AD=BCD.AC与BD互相平分
7、(4分)已知直角三角形的两条直角边长分别为1和4,则斜边长为( )
A.3B.C.D.5
8、(4分)要比较两名同学共六次数学测试中谁的成绩比较稳定,应选用的统计量为( )
A.中位数 B.方差 C.平均数 D.众数
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,于,于,且,,,则_______.
10、(4分)要用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”,首先应假设_____.
11、(4分)如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E,连结DE.若四边形ODBE的面积为9,则△ODE的面积是________.
12、(4分)如果代数式有意义,那么字母x的取值范围是_____.
13、(4分)如图,在菱形ABCD 中,AC与BD相交于点O,点P是AB的中点,PO=2,则菱形ABCD的周长是_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,在正方形ABCD中,点E、F分别是边BC、CD上的点,且CE=CF,连接AE,AF,取AE的中点M,EF的中点N,连接BM,MN.
(1)请判断线段BM与MN的数量关系和位置关系,并予以证明.
(2)如图2,若点E在CB的延长线上,点F在CD的延长线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
15、(8分)(1)计算: (2)计算:
16、(8分)为参加全县的“我爱古诗词”知识竞赛,徐东所在学校组织了一次古诗词知识测试,徐东从全体学生中随机抽取部分同学的分数(得分取正整数,满分为100分)进行统计,以下是根据这次测试成绩制作的不完整的频数分布表(含频率)和频数分布直方图.请根据频数分布表(含频率)和频数分布直方图,回答下列问题:
(1)分别求出a、b、m、n的值;(写出计算过程)
(2)老师说:“徐东的测试成绩是被抽取的同学成绩的中位数”,那么徐东的测试成绩在什么范围内?
(3)得分在的为“优秀”,若徐东所在学校共有600名学生,从本次比赛中选取得分为“优秀”的学生参加区赛,请问共有多少名学生被选拔参加区赛?
17、(10分)某学校打算招聘英语教师。对应聘者进行了听、说、读、写的英语水平测试,其中甲、乙两名应聘者的成绩(百分制)如下表所示。
(1)如果学校想招聘说、读能力较强的英语教师,听、说、读、写成绩按照2:4:3:1的比确定,若在甲、乙两人中录取一人,请计算这两名应聘者的平均成绩(百分制)。从他们的成绩看,应该录取谁?
(2)学校按照(1)中的成绩计算方法,将所有应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最后左边一组分数为:)。
①参加该校本次招聘英语教师的应聘者共有______________人(直接写出答案即可)。
②学校决定由高分到低分录用3名教师,请判断甲、乙两人能否被录用?并说明理由。
18、(10分)计算:(4+)(4﹣)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若已知a,b为实数,且=b﹣1,则a+b=_____.
20、(4分)一项工程,甲单独做x小时完成,乙单独做y小时完成,则两人一起完成这项工程需要___小时.
21、(4分)矩形的对角线与相交于点,,,分别是,的中点,则的长度为________.
22、(4分)一次函数y=mx﹣4中,若y随x的增大而减小,则m的取值范围是_____﹣
23、(4分)已知三角形两边长分别为2,3,那么第三边的长可以是___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:一个正比例函数与一个一次函数的图象交于点A(1,4)且一次函数的图象与x轴交于点B(3,0),坐标原点为O.
(1)求正比例函数与一次函数的解析式;
(2)若一次函数交与y轴于点C,求△ACO的面积.
25、(10分)如图1,在四边形ABCD中,∠ADC=90°,AB=AC.点E、F分别为AC、BC的中点,连结EF、DE.
(1)请在图1中找出长度相等的两条线段?并说明理由.(AB=AC除外)
(2)如图2,当AC平分∠BAD,∠DEF=90°时,求∠BAD的度数.
(3)如图3,四边形CDEF是边长为2的菱形,求S四边形ABCD.
26、(12分)如图,城气象台测得台风中心在城正西方向的处,以每小时的速度向南偏东的方向移动,距台风中心的范围内是受台风影响的区域.
(1)求城与台风中心之间的最小距离;(2)求城受台风影响的时间有多长?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据四边形ABCD是菱形,且∠BAD=120°可知∠ABC=60°,AB=AC,即△ABC为等边三角形,则AB=AC=BC=4,作AE⊥BC于点E,可得BE=2,AE= ,求得S菱形ABCD=BC·AE=4×=
【详解】
在菱形ABCD中,有AB=AC
∵∠BAD=120°
∴∠ABC=60°
∴△ABC为等边三角形
即AB=AC=BC=4
作AE⊥BC于点E
∴BE=2,AE=
∴S菱形ABCD=BC·AE=4×=
故选C
本题考查了菱形的性质,,等边三角形的判定,30°,60°,90°角三角形的边长关系,解本题的关键是发现图中的等边三角形,将对角线长度转化为菱形边长.
2、C
【解析】
各项化简后,利用同类二次根式定义判断即可.
【详解】
解:、,不符合题意;
、,不符合题意;
、,与的被开方数相同;与是同类二次根式是符合题意;
、,不符合题意,
故选:.
此题考查了同类二次根式,熟练掌握同类二次根式定义是解本题的关键.
3、B
【解析】
直接利用平方差公式以及完全平方公式分解因式,进而得出答案.
【详解】
A、x2-1=(x+1)(x-1),故此选项不合题意;
B、x2-2x+1=(x-1)2,故此选项符合题意;
C、x(x-2)+(x-2)=(x+1)(x-2),故此选项不合题意;
D、x2+2x+1=(x+1)2,故此选项不合题意;
故选B.
此题主要考查了公式法以及提公因式法分解因式,熟练应用乘法公式是解题关键.
4、C
【解析】
先根据直线y=1x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.
【详解】
解:∵直线y=1x+b,k=1>0,
∴y随x的增大而增大,
又∵-2<-1<1,
∴y1<y2<y1.
故选:C.
本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
5、A
【解析】
根据k>0必过一三象限, b>0必过一、二、三象限,即可解题.
【详解】
∵y=x+3中k=1>0,b=1>0,
∴函数图象必过一、二、三象限,
故选A.
本题考查了一次函数的图象和性质,属于简单题,熟悉系数与函数图象的位置关系是解题关键.
6、A
【解析】
根据平行四边形的判定方法依次判定各项后即可解答.
【详解】
选项A,AB∥CD,AD=BC,一组对边平行,另一组对边相等的四边形不一定是平行四边形,选项A不能够判定四边形ABCD是平行四边形;
选项B,AB=CD,AB∥CD,一组对边平行且相等的四边形是平行四边形,选项B能够判定四边形ABCD是平行四边形;
选项C,AB=CD,AD=BC,两组对边分别相等的四边形是平行四边形,选项C能够判定四边形ABCD是平行四边形;
选项D,AC与BD互相平分,对角线互相平分的四边形是平行四边形,选项D能够判定四边形ABCD是平行四边形.
故选A.
本题考查了平行四边形的判定方法,熟练运用判定方法是解决问题的关键.
7、C
【解析】
根据勾股定理计算即可.
【详解】
解:由勾股定理得,斜边长=,
故选:C.
本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
8、B
【解析】分析:方差是用来衡量一组数据波动大小的量,中位数、众数、平均数是反映一组数据的集中程度
详解:由于方差反映数据的波动情况,所以要比较两名同学在四次数学测试中谁的成绩比较稳定,应选用的统计量是方差.
故选B.
点睛:本题考查了统计量的选取问题,熟练掌握各统计量的特征是解答本题的关键.中位数反映一组数据的中等水平,众数反映一组数据的多数水平,平均数反映一组数据的平均水平,方差反映一组数据的稳定程度,方差越大越不稳定,方差越小越稳定.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、140°
【解析】
由“”可证Rt△ABD≌Rt△ACD,可得,由三角形外角的性质可求的度数.
【详解】
解:,,
在Rt△ABD和Rt△ACD中,
,
∴Rt△ABD≌Rt△ACD(HL),
.
故答案为:.
本题考查了全等三角形的判定和性质,外角的性质,熟练运用全等三角形的判定是本题的关键.
10、每一个角都小于45°
【解析】
试题分析:反证法的第一步是假设命题的结论不成立,据此可以得到答案.
若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应假设每一个角都小于45°.
考点:此题主要考查了反证法
点评:解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
11、
【解析】
设B的坐标为(2a,2b),E点坐标为(x,2b),D点坐标为(2a,y),因为D、E、M在反比例函数图象上,则ab=k,2bx=k, 2ay=k, 根据四边形ODBE的面积列式,求得k值,再由2bx×2ay=4abxy=k2=9, 求得xy的值,然后根据所求的结果求出△BED的面积,则△ODE的面积就是四边形ODBE的面积和△BED的面积之差.
【详解】
解:设B的坐标为(2a,2b), 则M点坐标为(a,b),
∵M在AC上,
∴ab=k(k>0),
设E点坐标为(x,2b),D点坐标为(2a,y),
则2bx=k, 2ay=k,
∴S四边形ODBE=2a×2b-×(2bx+2ay)=9,
即4k- (k+k)=9,
解得k=3,
∵2bx×2ay=4abxy=k2=9,
∴4abxy=9,
解得:xy=,
则S△BED=BE×BD=
,
∴ S△ODE = S四边形ODBE -S△BED=9-
本题主要考查反比函数与几何综合,解题关键在于利用面积建立等式求出k.
12、x⩾−2且x≠1
【解析】
先根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.
【详解】
∵代数式有意义,
∴,
解得x⩾−2且x≠1.
故答案为:x⩾−2且x≠1.
本题考查分式有意义的条件和二次根式有意义的条件,解题的关键是掌握分式有意义的条件和二次根式有意义的条件.
13、1
【解析】
根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.
【详解】
∵四边形ABCD是菱形,
∴AC⊥BD,AB=BC=CD=AD,
∵点P是AB的中点,
∴AB=2OP,
∵PO=2,
∴AB=4,
∴菱形ABCD的周长是:4×4=1,
故答案为:1.
此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等,此题难度不大.
三、解答题(本大题共5个小题,共48分)
14、(1)BM=MN,BM⊥MN,证明见解析;(2)仍然成立,证明见解析
【解析】
(1)根据已知正方形ABCD的边角相等关系,推出△ABE≌△ADF(SAS),得出AE=AF,利用MN是△AEF的中位线,BM为Rt△ABE的中线,可得BM=MN,由外角性质,得出∠BME=∠1+∠3,再由MN∥AF,∠1+∠2+∠EAF=∠BAD=90°,等角代换可推出结论;
(2)同(1)思路一样,证明△ABE≌△ADF(SAS),利用外角性质和中位线平行关系,通过等角代换即得证明结论.
【详解】
(1)BM=MN,BM⊥MN.
证明:在正方形ABCD中,∠BAD=∠ABC=∠ADC=90°,AB=AD=BC=DC,
∵CE=CF,
∴BC-CE=DC-CF,
∴BE=DF,
∴△ABE≌△ADF(SAS),
∴∠1=∠2,AE=AF,
∵M为AE的中点,N为EF的中点,
∴MN是△AEF的中位线,BM为Rt△ABE的中线.
∴MN∥AF,MN=AF,BM=AE=AM,
∴BM=MN,∠EMN=∠EAF,
∵BM=AM,
∴∠1=∠3, ∠2=∠3,
∴∠BME=∠1+∠3=∠1+∠2,
∴∠BMN=∠BME+∠EMN=∠1+∠2+∠EAF=∠BAD=90°,
∴BM⊥MN.
故答案为:BM=MN,BM⊥MN.
(2)(1)中结论仍然成立.
证明:在正方形ABCD中,∠BAD=∠ABC=∠ADC=90°,AB=AD=BC=DC,
∴∠ABE=∠ADF=90°,
∵CE=CF,∴CE-BC=CF-DC,∴BE=DF,
∴△ABE≌△ADF(SAS),∴∠1=∠2,AE=AF,
同理(1)得MN∥AF,MN=AF,BM=AE=AM,
∴BM=MN,
同理(1)得∠BME=∠1+∠2,∠EMN=∠EAF,
∴∠BMN=∠EMN-∠BME=∠EAF-(∠1+∠2)=∠BAD=90°,
∴BM⊥MN,
故答案为:结论仍成立.
考查了正方形的性质,全等三角形的判定和性质,外角的性质,直角三角形中中线的性质,三角形中位线性质,熟记几何图形的性质概念是解题关键,注意图形的类比拓展.
15、(1)15;(2).
【解析】
(1)先进行二次根式的化简,然后再根据二次根式乘除法的运算法则进行计算即可;
(2)先分别化简各个二次根式,然后再进行合并即可.
【详解】
(1)原式=3×5÷
=15÷
=15;
(2)原式=3﹣4+
=-+.
本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
16、 (1) a=3,b=0.3,m=15,n=0.04(2) (3) 24
【解析】
(1)首先通过统计表中任意一组已知的数据,用总人数=频数÷频率求出总人数,再用频数=总人数×频率求出a值,再用总人数减去其他组别的频数和,得到第2组的频数m值,最后用频率=频数÷总人数得出b值和n值.
(2)中位数是指把一组数据从小到大排列,位于最中间的那个数.若这组数据的个数是偶数个,则是指位于最中间两个数的平均数.通过概念可以确定中位数在哪一组内.
(3)本小题考查用样本估计总体,首先需要把我们调查的样本中优秀学生所占的比例计算出来,再通过这个比例之间可以去估计总体600名学生优秀的人数.
【详解】
(1) 由总人数=频数÷频率可知,取第一组数据,得到总人数=9÷0.18=50(人)
由频数=总人数×频率可知,第四组数据中,a=50×0.06=3(人)
用总人数减去其他组别的频数和,得到第2组的频数,m=50-(9+21+3+2)=15(人)
由频率=频数÷总人数可知,第二组数据中,b=15÷50=0.3
第五组数据中,n=2÷50=0.04
综上可得:a=3,b=0.3,m=15,n=0.04
(2)因为总人数是50人,则数据为偶数个,则中位数应该把成绩数据从小到大排列之后,取第25个和第26个的平均数.第一组与第二组的人数已经有9+15=24人,则第25个与第26个数据的平均数应该在第三组的范围内.即徐东的测试成绩在范围内.
(3)样本中优秀的学生所占比例即为第5组的频数值0.04,所以全校的优秀比例也可用该值估算:600×0.04=24(人)
故答案为(1) a=3,b=0.3,m=15,n=0.04(2) (3) 24
本题考察了频率分布表中的计算,以及用样本估计总体.涉及到的公式有总人数=频数÷频率,样本中各部分所占比例近似等于总体中各部分所占比例.
17、(1)录取乙;(2)①30,②乙一定能被录用;甲不一定能被录用,见解析.
【解析】
(1)根据加权平均数的定义与性质即可求解判断;
(2)①根据直方图即可求解;②根据直方图判断甲乙所在的分段,即可判断.
【详解】
解:(1)由题意得,
(分)
(分)
∵
∴应该录取乙。
(2)①30
②由频数分布直方图可知成绩最高一组分数段中有1人,而分,所以乙是第一名,一定被录取;在一组有5人,其中有2人被录用,分,可确定甲在本组中,但不能确定甲在本组中排第几名,所以甲不一定能被录用。
此题主要考查统计调查的应用,解题的关键是熟知加权平均数的求解与性质.
18、1.
【解析】
根据运算法则一一进行计算.
【详解】
原式=42﹣()2=16﹣7=1.
本题考查了等式的运算法则,熟练掌握等式的运算法则是本题解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、6
【解析】
根据二次根式被开方数为非负数可得关于a的不等式组,继而可求得a、b的值,代入a+b进行计算即可得解.
【详解】
由题意得:,
解得:a=5,
所以:b=1,
所以a+b=6,
故答案为:6.
本题考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键.
20、
【解析】
甲单独做一天可完成工程总量的,乙单独做一天可完成工程总量的,二人合作一天可完成工程总量的.工程总量除以二人合作一天可完成工程量即可得出二人合作完成该工程所需天数.
【详解】
解答:解:设该工程总量为1.
二人合作完成该工程所需天数=1÷()=1÷=.
本题考查列代数式(分式),解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.
21、1
【解析】
分析题意,知道,分别是,的点,则可知是△AOD的中位线;结合中位线的性质可知= OA,故只要求出OA的长即可;已知矩形的一条对角线长,则可得出AC的长,进而得出OA的长,便可得解.
【详解】
∵四边形ABCD是矩形,
∴BD=AC=4,
∴OA=2.
∵,是DO、AD的中点,
∴是△AOD的中位线,
∴= OA =1.
故答案为:1
此题考查中位线的性质,矩形的性质,解题关键在于利用中位线性质求解
22、m<1
【解析】
利用一次函数图象与系数的关系列出关于m的不等式m<1即可.
【详解】
∵一次函数y=mx﹣4中,y随x的增大而减小,
∴m<1,
故答案是:m<1.
本题主要考查一次函数图象与系数的关系.解答本题的关键是注意理解:k>1时,直线必经过一、三象限,y随x的增大而增大;k<1时,直线必经过二、四象限,y随x的增大而减小.
23、2(答案不唯一).
【解析】
根据三角形的三边关系可得3-2<第三边长<3+2,再解可得第三边的范围,然后可得答案.
【详解】
解:设第三边长为x,由题意得:
3-2<x<3+2,
解得:1<x<1.
故答案为:2(答案不唯一).
此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.
二、解答题(本大题共3个小题,共30分)
24、(1)y=﹣2x+1;(2)2.
【解析】
(1)先设正比例函数解析式为y=mx,再把(1,4)点代入可得m的值,进而得到解析式;设一次函数解析式为y=kx+b,把(1,4)(2,0)代入可得关于k、b的方程组,然后再解出k、b的值,进而得到解析式;
(2)利用一次函数解析式,求得OC的长,进而得出△ACO的面积.
【详解】
解:(1)设正比例函数解析式为y=mx,
∵图象经过点A(1,4),
∴4=m×1,即m=4,
∴正比例函数解析式为y=4x;
设一次函数解析式为y=kx+b,
∵图象经过(1,4)(2,0),
∴,
解得:,
∴一次函数解析式为y=﹣2x+1.
(2)在y=﹣2x+1中,令x=0,则y=1,
∴C(0,1),
∴OC=1,
∴S△AOC=×1×1=2.
此题主要考查了待定系数法求一次函数解析式以及三角形的面积,关键是用联立解析式的方法求出交点坐标.
25、(1)DE=EF,见解析;(2)∠BAD=60°;(3)S四边形ABCD=6.
【解析】
(1)利用直角三角形斜边的中线性质和三角形的中位线性质可得结论;
(2)先证明∠CEF=∠BAD,∠DEC=∠BAD,根据∠DEF=90°列方程得∠BAD的度数;
(3)由四边形CDEF是菱形,说明△CDE是等边三角形,再根据等底同高说明△CDE与△DEA间关系,根据相似说明△CAB与△CEF间关系,由DE=2得AB=4,得等边△DEC的面积,利用三角形的面积间关系得结论.
【详解】
(1)DE=EF,
在△ABC中,点E,F分别为AC,BC的中点,
∴EF∥AB,且EF=AB,
在Rt△ACD中,点E为AC的中点,
∴DE=AC,
∵AB=AC,
∴DE=EF;
(2)∵AC平分∠BAD,EF∥AB,
DE=AC=AE=EC,
∴∠BAC=∠DAC,∠CEF=∠BAC,∠DEC=2∠DAC=∠BAD,
∵∠DEF=90°,
∴∠CEF+∠DEC=∠BAC+2∠DAC=90°,
∴∠BAC=∠DAC=30°,
∴∠BAD=60°;
(3)四边形ABCD的面积为:
∵四边形CDEF是菱形,EC=DE,
∴△CDE与△CEF都是等边三角形,
∵EF=DE=CD=CF=2,
∴AB=4,
∴S△DCE=S△DEA=S△CEF;
∵EF∥AB,
∴,
∴S△ABC=4S△CEF=4
∴S四边形ABCD=S△DCE+S△DEA+S△ABC=2×+4=6.
本题考查了四边形的综合问题,解题的关键是掌握三角形的中位线定理、直角三角形斜边的中线的性质、菱形的性质及等边三角形的面积等知识.题目难度中等,由题目原型到探究再到结论,步步深入,符合认知规律.
26、(1)城与台风中心之间的最小距离是;(2)城遭受这次台风影响的时间为小时.
【解析】
(1)城与台风中心之间的最小距离即为点A到OB的垂线段的长,作,根据直角三角形中所对的直角边等于斜边的一半求解即可;
(2)设上点,千米,则还有一点,有千米,则在DG范围内,城遭受这次台风影响,所以求出DG长,除以台风移动的速度即为时间.
【详解】
解:作
在中,
,则
答:城与台风中心之间的最小距离是
设上点,千米,则还有一点,有
千米
是等腰三角形,
是的垂直平分线,
在中,千米,千米
由勾股定理得,(千米)
千米,遭受台风影响的时间是:(小时)
答:城遭受这次台风影响个时间为小时
本题考查了含直角三角形的性质、等腰三角形的性质及勾股定理,正确理解题意是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年江苏省南京师范大附中江宁分校九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年江苏省南京师范大附中江宁分校九年级数学第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省南京师大二附中数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年江苏省南京师大二附中数学九年级第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年吉林省吉大附中九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年吉林省吉大附中九年级数学第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。