湖北省武汉市金银湖区2024-2025学年数学九上开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)多项式x2﹣1与多项式x2﹣2x+1的公因式是( )
A.x﹣1B.x+1C.x2﹣1D.(x﹣1)2
2、(4分)若分式的值为0,则x的值等于
A.0B.3C.D.
3、(4分)若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(( )
A.B.C.D.
4、(4分)已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是( )
A.(2,1)B.(2,3)C.(2,2)D.(1,2)
5、(4分)若,则下列不等式不成立的是( )
A.B.C.D.
6、(4分)点M(1,2)关于y轴对称点的坐标为( )
A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)
7、(4分)如图,在菱形ABCD中,AC、BD相交于点O,AC=8,BD=6,则菱形的边长等于( )
A.10B.20C.D.5
8、(4分)在△ABC中,AB=,BC=,AC=,则( )
A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若,且,则的值是__________.
10、(4分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH=_____.
11、(4分)如图,在菱形ABCD中,∠=∠EAF=,∠BAE=,则∠CEF=________.
12、(4分)已知、、是反比例函数的图象上的三点,且,则、、的大小关系是________________.
13、(4分)正方形网格中,∠AOB如图放置,则tan∠AOB=______________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,点P的坐标为(1,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.
(1)写出点Q的坐标是________;
(2)若把点Q向右平移个单位长度,向下平移个单位长度后,得到的点落在第四象限,求的取值范围;
(3)在(2)条件下,当取何值,代数式取得最小值.
15、(8分)如图,平行四边形ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.
求证:四边形AECF是平行四边形.
16、(8分)八年级班一次数学测验,老师进行统计分析时,各分数段的人数如图所示(分数为整数,满分分).请观察图形,回答下列问题:
(1)该班有____名学生:
(2)请估算这次测验的平均成绩.
17、(10分)已知:如图在平行四边形ABCD中,过对角线BD的中点O作直线EF分别交DA的延长线、AB、DC、BC的延长线于点E、M、N、F.
(1)观察图形并找出一对全等三角形:△_≌△_,请加以证明;
(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?
18、(10分)如图,矩形ABCD中,对角线AC、BD相交于点O,点P是线段AD上一动点(不与与点D重合),PO的延长线交BC于Q点.
(1)求证:四边形PBQD为平行四边形.
(2)若AB=6cm,AD=8cm,P从点A出发.以1cm/秒的速度向点D匀速运动.设点P运动时间为t秒,问四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)二次根式的值是________.
20、(4分)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为 (用n表示)
21、(4分)如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB方向平移得到△DEF,若四边形ABED的面积等于8,则平移的距离为_____.
22、(4分)如图,在中,,点、、分别为、、的中点,若,则_________.
23、(4分)如图,在平面直角坐标系中,矩形的边在轴上,边在轴上,点的坐标为.将矩形沿对角线翻折,点落在点的位置,且交轴于点,那么点的坐标为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在边长为24cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟2cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟4cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:
(1)经过6秒后,BP= cm,BQ= cm;
(2)经过几秒△BPQ的面积等于?
(3)经过几秒后,△BPQ是直角三角形?
25、(10分)如图所示,平行四边形中,和的平分线交于边上一点 ,
(1)求的度数.
(2)若,则平行四边形的周长是多少?
26、(12分)已知矩形,为边上一点,,点从点出发,以每秒个单位的速度沿着边向终点运动,连接,设点运动的时间为秒,则当的值为__________时,是以为腰的等腰三角形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
x2-1=(x+1)(x-1),
x2-2x+1=(x-1)2,
所以公因式是:x-1,
故选A.
本题考查多项式的公因式,解题的关键是把每一个多项式都因式分解.
2、C
【解析】
直接利用分式的值为0的条件以及分式有意义的条件进而得出答案.
【详解】
分式的值为0,
,,
解得:,
故选C.
本题考查了分式的值为零的条件,熟知“分子为0且分母不为0时,分式的值为0”是解题的关键.
3、B
【解析】
解:根据题意可得:
∴反比例函数处于二、四象限,则在每个象限内为增函数,
且当x<0时y>0,当x>0时,y<0,
∴<<.
4、D
【解析】
根据点A、A′的坐标确定出平移规律,然后根据规律求解点B′的坐标即可.
【详解】
∵A(1,0)的对应点A′的坐标为(2,﹣1),
∴平移规律为横坐标加1,纵坐标减1,
∵点B(0,3)的对应点为B′,
∴B′的坐标为(1,2).
故选D.
本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.
5、C
【解析】
直接根据不等式的性质进行分析判断即可得到答案.
【详解】
A.,则a是负数,可以看成是5<6两边同时加上a,故A选项成立,不符合题意;
B.是不等式5<6两边同时减去a,不等号不变,故B选项成立,不符合题意;
C.5<6两边同时乘以负数a,不等号的方向应改变,应为:,故选项C不成立,符合题意;
D.是不等式5<6两边同时除以a,不等号改变,故D选项成立,不符合题意.
故选C.
本题考查的实际上就是不等式的基本性质:不等式的两边都加上(或减去)同一个数(或式子)不等号的方向不变;不等式两边同乘以(或除以)同一个正数,不等号的方向不变;
不等式两边同乘以(或除以)同一个负数,不等号的方向改变.
6、A
【解析】
关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.
【详解】
点M(1,2)关于y轴对称点的坐标为(-1,2)
本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.
7、D
【解析】
根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.
【详解】
解:∵四边形ABCD是菱形,
∵AC=8,BD=6,
∴OA=4,OB=3,
即菱形ABCD的边长是1.
故选:D.
本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记性质是解题的关键.
8、A
【解析】
试题解析:∵在△ABC中,AB=,BC=,AC=,
∴
∴∠A=90°
故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
根据平方差公式解答即可.
【详解】
∵x2-y2=(x+y)(x-y)=20,x+y=-2,
∴x-y=-1.
故答案为:-1.
本题考查了平方差公式,解题的关键是熟记平方差公式.
10、
【解析】
分析:本题考查的是菱形的面积问题,菱形的面积即等于对角线积的一半,也等于底乘以高.
解析:∵四边形ABCD是菱形,AC=8,DB=6,∴菱形面积为24,设AC与BD相较于点O,∴AC⊥BD,OA=4,OB=3,∴AB=5,又因为菱形面积为AB×DH=24,∴DH=.
故答案为.
11、20°
【解析】
首先证明△ABE≌△ACF,然后推出AE=AF,证明△AEF是等边三角形,得∠AEF=60°,最后求出∠CEF的度数.
【详解】
解:连接AC, 在菱形ABCD中,AB=CB, ∵=60°,
∴∠BAC=60°,△ABC是等边三角形,
∵∠EAF=60°, ∴∠BAC-∠EAC=∠EAF-∠EAC,
即:∠BAE=∠CAF,
在△ABE和△ACF中,
,
∴△ABE≌△ACF(ASA),
∴AE=AF, 又∠EAF=∠D=60°,
则△AEF是等边三角形, ∴∠AEF=60°,
又∠AEC=∠B+∠BAE=80°,
则∠CEF=80°-60°=20°.
故答案为:20°.
此题主要考查菱形的性质和等边三角形的判定以及三角形的内角和定理,有一定的难度,解答本题的关键是正确作出辅助线,然后熟练掌握菱形的性质.
12、y2
解:反比例函数当x<0时为减函数且y<0,由x1
综上所述可得y2
【解析】
试题解析:如图,
tan∠AOB==1,
故答案为1.
三、解答题(本大题共5个小题,共48分)
14、(1)Q(-3,1)(2)a>3(3)0
【解析】
(1)如图,作PA⊥x轴于A,QB⊥x轴于B,则∠PAO=∠OBQ=90°,证明△OBQ≌△PAO(AAS),从而可得OB=PA,QB=OA,继而根据点P的坐标即可求得答案;
(2)利用点平移的规律表示出Q′点的坐标,然后根据第四象限点的坐标特征得到a的不等式组,再解不等式即可;
(3)由(2)得,m=-3+a,n=1-a,代入所求式子得 ,继而根据偶次方的非负性即可求得答案 .
【详解】
(1)如图,作PM⊥x轴于A,QN⊥x轴于B,则∠PAO=∠OBQ=90°,
∴∠P+∠POA=90°,
由旋转的性质得:∠POQ=90°,OQ=OP,
∴∠QOB+∠POA=90°,
∴∠QOB=∠P,
∴△OBQ≌△PAO(AAS),
∴OB=PA,QB=OA,
∵点P的坐标为(1,3),
∴OB=PA=3,QB=OA=1,
∴点Q的坐标为(-3,1);
(2)把点Q(-3,1)向右平移a个单位长度,向下平移a个单位长度后,
得到的点M的坐标为(-3+a,1-a),
而M在第四象限,
所以,
解得a>3,
即a的范围为a>3;
(3)由(2)得,m=-3+a,n=1-a,
∴
,
∵,
∴当a=4时,代数式的最小值为0.
本题考查了坐标与图形变换-旋转,象限内点的坐标特征,解不等式组,配方法在求最值中的应用等,综合性较强,熟练掌握相关知识是解题的关键.
15、详见解析
【解析】
平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题所给的条件为四边形ABCD是平行四边形,可证OF=OE,OA=OC,根据条件在图形中的位置,可选择利用“对角线相互平分的四边形为平行四边形”来解决.
【详解】
证明:∵四边形ABCD是平行四边形,
∴OD=OB,OA=OC,
∵AB∥CD,
∴∠DFO=∠BEO,∠FDO=∠EBO,
∴在△FDO和△EBO中,
∴△FDO≌△EBO(AAS),
∴OF=OE,
∴四边形AECF是平行四边形.
平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
16、(1)60 (2)61分
【解析】
(1)把各分数段的人数相加即可.
(2)用总分数除以总人数即可求出平均分.
【详解】
(1)(名)
故该班有60名学生.
(2)(分)
故这次测验的平均成绩为61分.
本题考查了条形统计图的问题,掌握条形统计图的性质、平均数的算法是解题的关键.
17、(1)△DOE≌△BOF;证明见解析;(2)绕点O旋转180°后得到或以点O为中心作对称变换得到.
【解析】
(1)本题要证明如△ODE≌△BOF,已知四边形ABCD是平行四边形,具备了同位角、内错角相等,又因为OD=OB,可根据AAS能判定△DOE≌△BOF;
(2)平行四边形是中心对称图形,这对全等三角形中的一个是以其中另一个三角形绕点O旋转180°后得到或以点O为中心作对称变换得到.
【详解】
(1)△DOE≌△BOF;
证明:∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠EDO=∠FBO,∠E=∠F.
又∵OD=OB,
∴△DOE≌△BOF(AAS).
(2)绕点O旋转180°后得到或以点O为中心作对称变换得到.
考点:1.平行四边形的性质;2.全等三角形的判定.
18、(1)详见解析;(2)点P运动时间为秒时,四边形PBQD是菱形.
【解析】
(1)依据矩形的性质和平行线的性质,通过全等三角形的判定定理判定△POD≌△QOB,所以OP=OQ,则四边形PBQD的对角线互相平分,故四边形PBQD为平行四边形.
(2)点P从点A出发运动t秒时,AP=tcm,PD=(4-t)cm.当四边形PBQD是菱形时,PB=PD=(4-t)cm.在直角△ABP中,根据勾股定理得AP2+AB2=PB2,即t2+32=(4-t)2,由此可以求得t的值.
【详解】
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠PDO=∠QBO,
在△POD和△QOB中,
∴△POD≌△QOB(ASA),
∴OP=OQ;
又∵OB=OD
∴四边形PBQD为平行四边形;
(2)答:能成为菱形;
证明:t秒后AP=t,PD=8﹣t,
若四边形PBQD是菱形,
∴PD=BP=8﹣t,
∵四边形ABCD是矩形,
∴∠A=90°,
在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,
即62+t2=(8﹣t)2,
解得:t=.
即点P运动时间为秒时,四边形PBQD是菱形.
本题考查了平行四边形的判定、矩形的性质以及菱形的性质.凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据二次根式的性质进行化简即可得解.
【详解】
=|-1|=1.
故答案为:-1.
此题主要考查了二次根式的化简,注意:.
20、(2n,1)
【解析】
试题分析:根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:
由图可知,n=1时,4×1+1=5,点A5(2,1),
n=2时,4×2+1=9,点A9(4,1),
n=3时,4×3+1=13,点A13(6,1),
∴点A4n+1(2n,1).
21、1
【解析】
∵将△ABC沿CB向右平移得到△DEF,四边形ABED的面积等于8,AC=4,
∴平移距离=8÷4=1.
点睛:本题考查平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED是平行四边形,再根据平行四边形的面积公式即可求解.
22、1
【解析】
根据直角三角形的性质求出AB,根据三角形中位线定理求出EF.
【详解】
解:∵∠ACB=90°,点D为AB的中点,
∴AB=2CD=16,
∵点E、F分别为AC、BC的中点,
∴EF=AB=1,
故答案为:1.
本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
23、(0,).
【解析】
先证明EA=EC(设为x);根据勾股定理列出x2=12+(3-x)2,求得x=,即可解决问题.
【详解】
由题意知:∠BAC=∠DAC,AB∥OC,
∴∠ECA=∠BAC,
∴∠ECA=∠DAC,
∴EA=EC(设为x);
由题意得:OA=1,OC=AB=3;
由勾股定理得:x2=12+(3-x)2,
解得:x=,
∴OE=3-=,
∴E点的坐标为(0,).
故答案为:(0,).
该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答;对综合的分析问题解决问题的能力提出了较高的要求.
二、解答题(本大题共3个小题,共30分)
24、(1)12、1;(2)经过2秒△BPQ的面积等于.(3)经过6秒或秒后,△BPQ是直角三角形.
【解析】
(1)根据路程=速度×时间,求出BQ,AP的值就可以得出结论;
(2)作QD⊥AB于D,由勾股定理可以表示出DQ,然后根据面积公式建立方程求出其解即可;
(3)先分别表示出BP,BQ的值,当∠BQP和∠BPQ分别为直角时,由等边三角形的性质就可以求出结论.
【详解】
(1)由题意,得
AP=12cm,BQ=1cm.
∵△ABC是等边三角形,
∴AB=BC=1cm,
∴BP=21-12=12cm.
故答案为:12、1.
(2)设经过x秒△BPQ的面积等于,作QD⊥AB于D,则 BQ=4xcm.
∴∠QDB=90°,
∴∠DQB=30°,
在Rt△DBQ中,由勾股定理,得
解得;x1=10,x2=2,
∵x=10时,4x>1,故舍去
∴x=2.
答:经过2秒△BPQ的面积等于.
(3)经过t秒后,△BPQ是直角三角形.
∵△ABC是等边三角形,
∴AB=BC=1cm,∠A=∠B=∠C=60°,
当∠PQB=90°时,
∴∠BPQ=30°,
∴BP=2BQ.
∵BP=1-2t,BQ=4t,
∴1-2t=2×4t,
解得t=;
当∠QPB=90°时,
∴∠PQB=30°,
∴BQ=2PB,
∴4t=2×(1-2t)
解得t=6
∴经过6秒或秒后,△BPQ是直角三角形.
本题考查了动点问题的运用,等边三角形的性质的运用,30°的直角三角形的性质的运用,勾股定理的运用,三角形的面积公式的运用,解答时建立根据三角形的面积公式建立一元二次方程求解是关键.
25、(1);(2)平行四边形的周长是.
【解析】
(1)根据∠BEC=180°﹣(∠EBC+∠ECB),把∠EBC+∠ECB用角平分线定义转化为∠ABC与∠DCB和的一半即可;
(2)根据角平分线和平行线得到AE=AB,DE=DC,由此可得平行四边形ABCD周长=6AB.
【详解】
解:(1) ∵四边形是平行四边形
又∵平分和
.
∴∠BEC=180°﹣(∠EBC+∠ECB)=90°;
(2)在中,.
又
,同理:
∵平行四边形中,,
∴平行四边形的周长是.
本题主要考查了平行四边形的性质、勾股定理,解题的关键是通过角平分线和平行线转化线段.
26、或
【解析】
根据矩形的性质求出∠D=90°,AB=CD=8,求出DE后根据勾股定理求出AE;过E作EM⊥AB于M,过P作PQ⊥CD于Q,求出AM=DE=3,当EP=EA时,AP=2DE=6,即可求出t;当AP=AE=5时,求出BP=3,即可求出t;当PE=PA时,则x2=(x-3)2+42,求出x,即可求出t.
【详解】
∵四边形ABCD是长方形,
∴∠D=90°,AB=CD=8,
∵CE=5,
∴DE=3,
在Rt△ADE中,∠D=90°,AD=4,DE=3,由勾股定理得:AE=5
过E作EM⊥AB于M,过P作PQ⊥CD于Q,
则AM=DE=3,
若△PAE是等腰三角形,则有三种可能:
当EP=EA时,AP=2DE=6,
所以t==2;
当AP=AE=5时,BP=8−5=3,
所以t=3÷1=3;
当PE=PA时,设PA=PE=x,BP=8−x,则EQ=5−(8−x)=x−3,
则
解得:x=,
则t=(8−)÷1=,
综上所述t=2或时,△PAE为等腰三角形。
故答案为:2或.
本题考查等腰三角形的性质,分情况求得t的值是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
湖北省武汉市青山区2024-2025学年九上数学开学学业质量监测试题【含答案】: 这是一份湖北省武汉市青山区2024-2025学年九上数学开学学业质量监测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省枣阳阳光学校数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年湖北省枣阳阳光学校数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。