黑龙江省七台河市名校2024年九上数学开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列方程中是关于x的一元二次方程的是( )
A.x=x2﹣3B.ax2+bx+c=0
C.D.3x2﹣2xy﹣5y2=0
2、(4分)下列运算正确的是( )
A.÷=2B.2×3=6
C.+=D.3﹣=3
3、(4分)已知,是一次函数的图象上的两个点,则m,n的大小关系是
A.B.C.D.不能确定
4、(4分)如图,在平行四边形中,按以下步骤作图:(1)分别以A、B为圆心,以大于AB为半径画弧,两弧相交于P、Q两点;(2)连接PQ分别交AB、CD于EF两点;(3)连接AE、BE,若DC=5,EF=3,则△AEB的面积为( )
A.15B.C.8D.10
5、(4分)若式子有意义,则实数a的取值范围是( )
A.a>﹣1B.a>﹣1且a≠2C.a≥﹣1D.a≥﹣1且a≠2
6、(4分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为( )
A.6B.12C.4D.8
7、(4分)如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为( )
A.1B.2C.3D.4
8、(4分)下列图形是物理学中的力学、电学等器件的平面示意图,从左至右分别代表小车、音叉、凹透镜和砝码,其中是中心对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△AED;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CDE;⑤S△ABE=S△CEF.其中正确的是_____.
10、(4分)若3是关于x的方程x2-x+c=0的一个根,则方程的另一个根等于____.
11、(4分)将函数的图象向上平移3个单位长度,得到的函数图象的解析式为______.
12、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B5的坐标是_____________ 。
13、(4分)一组数据:25,29,20,x,14,它的中位数是24,则这组数据的平均数为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)阅读下面的材料:
解方程,这是一个一元四次方程,根据该方程的特点,
它的解法通常采用换元法降次:设,那么,于是原方程可变为
,解得.当时,,∴;当时,
,∴;
原方程有四个根: .
仿照上述换元法解下列方程:
(1)
(2) .
15、(8分)先化简,再求值:,其中是不等式的正整数解.
16、(8分)把一个足球垂直地面向上踢,(秒)后该足球的高度(米)适用公式.
(1)经多少秒时足球的高度为20米?
(2)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.
17、(10分)四边形为正方形,点为线段上一点,连接,过点作,交射线于点,以、为邻边作矩形,连接.
(1)如图,求证:矩形是正方形;
(2)当线段与正方形的某条边的夹角是时,求的度数.
18、(10分)如图,在ABCD中,经过A,C两点分别作AE⊥BD,CF⊥BD,E,F为垂足.
(1)求证:△AED≌△CFB;(2)求证:四边形AFCE是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图(1),已知小正方形的面积为1,把它的各边延长一倍得新正方形;把正方形边长按原法延长一倍得到正方形如图(2);以此下去⋯⋯,则正方形的面积为_________________.
20、(4分)若三角形的一边长为,面积为,则这条边上的高为______.
21、(4分)如图,在平面直角坐标系中,OA=AB,点A的坐标为(2,4),将△OAB绕点B旋转180°,得到△BCD,再将△BCD绕点D旋转180°,得到△DEF,如此进行下去,…,得到折线OA-AC-CE…,点P(2017,b)是此折线上一点,则b的值为_______________.
22、(4分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是________ cm.
23、(4分)某地出租车行驶里程()与所需费用(元)的关系如图.若某乘客一次乘坐出租车里程12,则该乘客需支付车费__________元.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知 BC∥EF,BC=EF,AF=DC.试证明:AB=DE.
25、(10分)如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.
(1)求证:AB=AC;
(2)若∠BAC=60°,BC=6,求△ABC的面积.
26、(12分)某高速公路要对承建的工程进行招标,现在甲、乙两个工程队前来投标,根据两队的申报材料估计:若甲、乙两队合作,24天可以完成;若由甲队单独做20天后,余下的工程由乙队做,还需40天完成,求甲、乙两队单独完成这项工程各需多少天?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据一元二次方程的定义即可解答.
【详解】
选项A,由x=x2﹣3得到:x2﹣x﹣3=0,符合一元二次方程的定义,故本选项正确;
选项B,当a=0时,该方程不是一元二次方程,故本选项错误;
选项C,该方程不是整式方程,故本选项错误;
选项D,该方程属于二元二次方程,故本选项错误;
故选A.
本题考查了一元二次方程的定义,一元二次方程必须满足三个条件:(1)只含有一个未知数,未知数的最高次数是2;(2)二次项系数不为0;(3)方程为整式方程.
2、A
【解析】
根据二次根式的除法法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C、D进行判断.
【详解】
解:A、原式==2,所以A选项正确;
B、原式=6×2=12,所以B选项错误;
C、与不能合并,所以C选项错误;
D、原式=2,所以D选项错误.
故选:A.
本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.
3、A
【解析】
根据一次函数中k的值确定函数的增减性,然后比较m、n的大小即可.
【详解】
解:∵一次函数y=2x-1中的k=2>0,
∴y随x的增大而增大,
∵图象经过A(-3,m),B(2,n)两点,且-3<2,
∴m
本题考查了一次函数的性质,熟练掌握一次函数的性质是解决此类问题的关键.
一次函数y=kx+b(k≠0),当k>0时,y随着x的增大而增大,当k<0时,y随着x的增大而减小.
4、B
【解析】
利用基本作图得到EF⊥AB,再根据平行四边形的性质得到AB=CD=5,然后利用三角形面积公式计算.
【详解】
解:由作图得EF垂直平分AB,
即EF⊥AB,
∵四边形ABCD为平行四边形,
∴AB=CD=5,
∴△AEB的面积=×5×3=.
故选:B.
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
5、D
【解析】
直接利用分式有意义的条件分析得出答案.
【详解】
解:式子有意义,则且
解得:且
故选:D
本题考查了分式有意义的条件以及二次根式有意义的条件,能正确得到相关不等式是解题的关键.
6、A
【解析】
过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.
【详解】
解:如图,过点D作DH⊥AC于H,
∵AD是△ABC的角平分线,DF⊥AB,
∴DF=DH,
在Rt△DEF和Rt△DGH中,,
∴Rt△DEF≌Rt△DGH(HL),
∴S△EDF=S△GDH,设面积为S,
同理Rt△ADF≌Rt△ADH,
∴S△ADF=S△ADH,
即38+S=50-S,
解得S=1.
故选A.
本题考查角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,解题的关键是作辅助线构造出全等三角形并利用角平分线的性质.
7、B
【解析】
根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.
【详解】
解:BD=BC=6,
∴AD=AB﹣BD=4,
∵BC=BD,BE⊥CD,
∴CE=ED,又CF=FA,
∴EF=AD=2,
故选B.
本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
8、C
【解析】
根据中心对称图形的定义,结合选项所给图形进行判断即可.
【详解】
解:A、不是中心对称图形,故本选项错误;
B、不是中心对称图形,故本选项错误;
C、是中心对称图形,故本选项正确;
D、不是中心对称图形,故本选项错误;
故选:C.
此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、①②⑤
【解析】
由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.⑤正确.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠EAD=∠AEB,
又∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠BEA,
∴AB=BE,
∵AB=AE,
∴△ABE是等边三角形;
②正确;
∴∠ABE=∠EAD=60°,
∵AB=AE,BC=AD,
∴△ABC≌△EAD(SAS);
①正确;
∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),
∴S△FCD=S△ABC,
又∵△AEC与△DEC同底等高,
∴S△AEC=S△DEC,
∴S△ABE=S△CEF;
⑤正确.
若AD与AF相等,即∠AFD=∠ADF=∠DEC,
即EC=CD=BE,
即BC=2CD,
题中未限定这一条件,
∴③④不一定正确;
故答案为:①②⑤.
此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.
10、-1
【解析】已知3是关于x的方程x1-5x+c=0的一个根,代入可得9-3+c=0,解得,c=-6;所以由原方程为x1-5x-6=0,即(x+1)(x-3)=0,解得,x=-1或x=3,即可得方程的另一个根是x=-1.
11、
【解析】
根据一次函数的图像平移的特点即可求解.
【详解】
函数的图象向上平移3个单位长度,得到的函数图象的解析式为+3,
∴函数为
此题主要考查一次函数的性质,解题的关键是熟知一次函数平移的特点.
12、(31,16)
【解析】
首先由B1的坐标为(1,1),点B2的坐标为(3,2),可得正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,即可求得A1的坐标是(0,1),A2的坐标是:(1,2),然后又待定系数法求得直线A1A2的解析式,由解析式即可求得点A3的坐标,继而可得点B3的坐标,观察可得规律Bn的坐标是(2n-1,2n-1).
【详解】
∵B1的坐标为(1,1),点B2的坐标为(3,2)
∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2
∴A1的坐标是(0,1),A2的坐标是:(1,2)
设直线A1A2的解析式为:y=kx+b
∴
解得:
∴直线A1A2的解析式是:y=x+1
∵点B2的坐标为(3,2)
∴点A3的坐标为(3,4)
∴点B3的坐标为(7,4)
∴Bn的横坐标是:2n-1,纵坐标是:2n−1
∴Bn的坐标是(2n−1,2n−1)
故点B5的坐标为(31,16).
此题考查了待定系数法求解一次函数的解析式以及正方形的性质,在解题中注意掌握数形结合思想与方程思想的应用.
13、22.1
【解析】∵一组数据:25,29,20,x,11,它的中位数是21,所以x=21,
∴这组数据为11,20,21,25,29,
∴平均数=(11+20+21+25+29)÷5=22.1.
故答案是:22.1.
【点睛】找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
三、解答题(本大题共5个小题,共48分)
14、(1);(2),为原方程的解
【解析】
(1)设,则由已知方程得到:,利用因式分解法求得该方程的解,然后解关于x的一元二次方程;
(2)设,则由已知方程得到:,利用因式分解法求得该方程的解,然后进行检验即可.
【详解】
(1)令
∴
∴
∴,
∴舍,
∴
(2)令
∴
∴
∴
∴,
∴,
∴,
经检验,,为原方程的解.
本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.
15、1.
【解析】
将原式被除式括号中两项通分并利用同分母分式的减法法则计算,除式分子利用完全平方公式分解因式,分母利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,再由关于x的不等式求出解集得到x的范围,在范围中找出正整数解得到x的值,将x的值代入化简后的式子中计算,即可得到原式的值.
【详解】
解:原式=
=
的正整数解为
但
所以
∴原式的值
此题考查一元一次不等式的整数解,分式的化简求值,解题关键在于掌握运算法则.
16、(1)(2)小明说得对;
【解析】
(1)将代入公式,求出h=20时t的值即可得;
(2)将函数解析式配方成顶点式,由顶点式得出足球高度的最大值即可作出判断.
【详解】
(1)足球高度为20米,即,将代入公式得:
(移项整理成一般形式)
(等式两边同时除以5)
(配方)
∴
答:经过2秒时足球的高度为20米.
(2)小明说得对,理由如下:
∵h=20t-5t2=-5(t-2)2+20,
∴由-5<0知,当t=2时,h的最大值为20,不能达到21米,
故小明说得对.
本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质及将实际问题转化为二次函数问题的能力.
17、∠EFC=125°或145°.
【解析】
(1)首先作EP⊥CD于P,EQ⊥BC于Q,由∠DCA=∠BCA,得出EQ=EP,再由∠QEF+∠FEC=45°,得出∠PED+∠FEC=45°,进而得出∠QEF=∠PED,即可判定Rt△EQF≌Rt△EPD,得出EF=ED,即可得证;
(2)分类讨论:①当DE与AD的夹角为35°时,∠EFC=125°;②当DE与DC的夹角为35°时,∠EFC=145°,即可得解.
【详解】
(1)作EP⊥CD于P,EQ⊥BC于Q,如图所示
∵∠DCA=∠BCA
∴EQ=EP,
∵∠QEF+∠FEP=90°,∠PED+∠FEP=90°,
∴∠QEF=∠PED
在Rt△EQF和Rt△EPD中,
∴Rt△EQF≌Rt△EPD
∴EF=ED
∴矩形DEFG是正方形;
(2)①当DE与AD的夹角为35°时,
∠DEP=∠QEF=35°,
∴∠EFQ=90°-35°=55°,
∠EFC=180°-55°=125°;
②当DE与DC的夹角为35°时,
∠DEP=∠QEF=55°,
∴∠EFQ=90°-55°=35°,
∠EFC=180°-35°=145°;
综上所述,∠EFC=125°或145°.
此题主要考查正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.
18、(1)见解析;(2)见解析.
【解析】
(1)根据平行四边形的性质可得AD=BC,∠CBF=∠ADE,再根据垂线的性质可得∠CFB=∠AED=90°,再根据全等三角形的判定(角角边)来证明即可;
(2)根据全等三角形的性质可得AE=CF,再由AE⊥BD,CF⊥BD可得AE∥CF,根据一组对边平行且相等的四边形为平行四边形即可证明.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠CBF=∠ADE,
∵AE⊥BD,CF⊥BD,
∴∠CFB=∠AED=90°,
∴△AED≌△CFB(AAS).
(2)证明:∵△AED≌△CFB,
∴AE=CF,
∵AE⊥BD,CF⊥BD,
∴AE∥CF,
∴四边形AFCE是平行四边形.
全等三角形的判定和性质及平行四边形的判定和性质是本题的考点,熟练掌握基础知识是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据条件计算出图(1) 正方形A1B1C1D1的面积,同理求出正方形A2B2C2D2的面积,由此找出规律即可求出答案.
【详解】
图(1)中正方形ABCD的面积为1,把各边延长一倍后,每个小三角形的面积也为1,
所以正方形A1B1C1D1的面积为5,
图(2)中正方形A1B1C1D1的面积为5,把各边延长一倍后,每个小三角形的面积也为5,
所以正方形A2B2C2D2的面积为52=25,
由此可得正方形A5B5C5D5的面积为55=1.
本题考查图形规律问题,关键在于列出各图形面积找出规律.
20、4
【解析】
利用面积公式列出关系式,将已知面积与边长代入即可求出高.
【详解】
解:根据题意得:÷×2=4.
此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.
21、2
【解析】
分析:根据规律发现点O到点D为一个周期,根据其坐标规律即可解答.
详解:∵点A的坐标为(2,4)且OA=AB,
∴O(0,0),B(4,0),C(6,-4),D(8,0),
2017÷8=252……1,
∴b==2.
点睛:本题主要考查了点的坐标,发现其坐标规律是解题的关键.
22、20
【解析】
利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得HF的长即为边AD的长.
【详解】
:∵∠HEM=∠AEH,∠BEF=∠FEM,
∴∠HEF=∠HEM+∠FEM= ×180°=90°,
同理可得:∠EHG=∠HGF=∠EFG=90°,
∴四边形EFGH为矩形,
∴GH∥EF,GH=EF,
∴∠GHN=∠EFM,
在△GHN和△EFM中
∴△GHN≌△EFM(AAS),
∴HN=MF=HD,
∴AD=AH+HD=HM+MF=HF,
∴AD=20厘米.
故答案为:20
此题主要考查了翻折变换的性质以及勾股定理等知识,得出四边形EFGH为矩形是解题关键.
23、10
【解析】
根据函数图象,设y与x的函数关系式为y=kx+b,运用待定系数法即可得到函数解析式,再将x=11代入解析式就可以求出y的值.
【详解】
解:由图象知,y与x的函数关系为一次函数,并且经过点(1,5)、(4,8),
设该一次函数的解析式为y=kx+b,
则有:,
解得:,
∴y=x+1.
将x=11代入一次函数解析式,
故出租车费为10元.
故答案为:10.
此题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.
二、解答题(本大题共3个小题,共30分)
24、证明见解析
【解析】
首先根据平行线的性质可得∠BCA=∠EFD,再根据AF=DC可得AC=DF,然后可以证明△ABC≌△DEF,再根据全等三角形的性质可得AB=DE.
【详解】
∵BC∥EF (已知),∴∠BCA=∠EFD( 两直线平行,内错角相等)
∵AF=DC(已知),∴AF+FC=DC+FC,即 AC=DF.
在△ABC和△DEF中,∵,∴△ABC≌△DEF( SAS),∴AB=DE( 全等三角形的对应边相等).
全等三角形的判定与性质,以及平行线的性质,关键是掌握证明三角形全等的判定方法:SSS、ASA、SAS、AAS.
25、(1)见解析;(2)
【解析】
(1)由角平分线上的点到角两边的距离相等可得DE=DF,利用HL易证Rt△BDE≌Rt△CDF,从而得到∠B=∠C,然后再用AAS证明△ABD≌△ACD即可得证.
(2)由∠BAC=60°和AB=AC可得△ABC为等边三角形,从而得到AB=BC=6,再由勾股定理求出高AD,即可求△ABC的面积.
【详解】
(1)∵AD平分∠BAC,DE⊥AB,DF⊥AC
∴DE=DF,∠BAD=∠CAD
在Rt△BDE和Rt△CDF中,
∵BD=CD,DE=DF
∴Rt△BDE≌Rt△CDF(HL)
∴∠B=∠C
在△ABD和△ACD中,
∵∠BAD=∠CAD,∠B=∠C,BD=CD
∴△ABD≌△ACD(AAS)
∴AB=AC
(2)∵∠BAC=60°,AB=AC
∴△ABC为等边三角形
∴AB=BC=6
又∵△ABD≌△ACD(已证)
∴∠ADB=∠ADC=90°
∵BC=6,BD=CD
∴BD=3
在Rt△ABD中,AD=
∴S△ABC=
本题考查全等三角形,等边三角形的判定与性质与勾股定理,熟练掌握角平分线的性质定理,得出全等条件是解题的关键.
26、甲队独做需30天,乙队独做需120天
【解析】
设甲队独做需a天,乙队独做需b天,根据题意可得两个等量关系为:甲工效×工作时间+乙工效×工作时间=1;甲工效×20+乙工效×40=1.列出方程组,再解即可.
【详解】
设甲队独做需a天,乙队独做需b天.
建立方程组 ,
解得 .
经检验a=30,b=120是原方程的解.
答:甲队独做需30天,乙队独做需120天.
本题考查了分式方程(组)的应用.得到工作量1的等量关系是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
黑龙江省牡丹江市名校2024年数学九上开学监测试题【含答案】: 这是一份黑龙江省牡丹江市名校2024年数学九上开学监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
黑龙江省海伦市2025届数学九上开学监测模拟试题【含答案】: 这是一份黑龙江省海伦市2025届数学九上开学监测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省信阳市名校2025届九上数学开学监测模拟试题【含答案】: 这是一份河南省信阳市名校2025届九上数学开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

