河南省信阳市名校2025届九上数学开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数的图像如图所示,则的取值范围是( )
A.B.C.D.
2、(4分)下列分解因式正确的是( )
A.x2-x+2=x(x-1)+2B.x2-x=x(x-1)C.x-1=x(1-)D.(x-1)2=x2-2x+1
3、(4分)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断()
A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确D.甲、乙均错误
4、(4分)如图,在平面直角坐标系中,点B在x轴上,△AOB是等腰三角形,AB=AO=5,BO=6,则点A的坐标为( )
A.(3,4)B.(4,3)C.(3,5)D.(5,3)
5、(4分)一次函数y=﹣3x+5的图象不经过的象限是第( )象限
A.一 B.二 C.三 D.四
6、(4分)在下列性质中,平行四边形不一定具有的是( )
A.对边相等B.对边平行C.对角互补D.内角和为360°
7、(4分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,要判定四边形DBFE是菱形,下列所添加条件不正确的是( )
A.AB=ACB.AB=BCC.BE平分∠ABCD.EF=CF
8、(4分)一次函数y=﹣x+6的图象上有两点A(﹣1,y1)、B(2,y2),则y1与y2的大小关系是( )
A.y1>y2B.y1=y2C.y1<y2D.y1≥y2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,,,点在上,且,点在上,连结,若与相似,则_____________.
10、(4分)如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为_____m.
11、(4分)正五边形的内角和等于______度.
12、(4分)菱形的面积是16,一条对角线长为4,则另一条对角线的长为______.
13、(4分)如图,菱形 OABC 的顶点 O 是原点,顶点 B 在 y 轴上,菱形的两条对角线的长分别是 8 和 6(AC>BC),反比例函数 y (x<0)的图象经过点 C,则 k 的值为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB.如果对于平面内一点P,线段AB上都存在点Q,使得PQ≤1,那么称点P是线段AB的“附近点”.
(1)请判断点D(4.5,2.5)是否是线段AB的“附近点”;
(2)如果点H (m,n)在一次函数的图象上,且是线段AB的“附近点”,求m的取值范围;
(3)如果一次函数y=x+b的图象上至少存在一个“附近点”,请直接写出b的取值范围.
15、(8分)关于x的方程ax2+bx+c=0(a0).
(1)已知a,c异号,试说明此方程根的情况.
(2)若该方程的根是x1=-1,x2=3,试求方程a(x+2)2+bx+2b+c=0的根.
16、(8分)如图,菱形的对角线、相交于点,,,连接.
(1)求证:;
(2)探究:当等于多少度时,四边形是正方形?并证明你的结论.
17、(10分)如图,在ABCD中,延长边BA到点E,延长边DC到点F,使CF=AE,连接EF,分别交AD,BC于点M,N.
求证:AM=CN.
18、(10分)已知关于的一元二次方程.
(1)求证:无论取何实数,该方程总有两个不相等的实数根;
(2)若方程的一根为3,求另一个根.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,小亮从点O出发,前进5m后向右转30°,再前进5m后又向右转30°,这样走n次后恰好回到点O处,小亮走出的这个n边形的每个内角是__________°,周长是___________________m.
20、(4分)某射手在相同条件下进行射击训练,结果如下:
该射手击中靶心的概率的估计值是______(精确到0.01).
21、(4分)已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.
22、(4分)甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米.
23、(4分)如图,四边形是矩形 ,是延长线上的一点,是上一点,;若,则 = ________ .
二、解答题(本大题共3个小题,共30分)
24、(8分)成都市某超市从生产基地购进200千克水果,每千克进价为2元,运输过程中质量损失5%,假设不计超市其他费用
(1)如果超市在进价的基础上提高5%作为售价,请你计算说明超市是否亏本;
(2)如果该水果的利润率不得低于14%,那么该水果的售价至少为多少元?
25、(10分)计算
(1)5﹣9+
(2)(2+)2﹣2.
26、(12分)如图,在Rt△ABC中,∠B=90°,∠C=30°,AC=48,点D从点C出发沿CA方向以每秒4个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒2个单位长的速度向点B匀速运动,当其中一个点到达终点,另一个点也随之停止运动,设点D、E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)当四边形BFDE是矩形时,求t的值;
(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.×
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据一次函数的图象得到关于k的不等式,求出k的取值范围即可.
【详解】
∵一次函数的图象过二、四象限,
∴k−2<0,
解得k<2.
故选:D.
此题考查一次函数图象与系数的关系,解题关键在于判定k的大小.
2、B
【解析】
根据因式分解的定义对各选项分析判断后利用排除法求解.
【详解】
A、x2-x+2=x(x-1)+2,不是分解因式,故选项错误;
B、x2-x=x(x-1),故选项正确;
C、x-1=x(1-),不是分解因式,故选项错误;
D、(x-1)2=x2-2x+1,不是分解因式,故选项错误.
故选:B.
本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.
3、C
【解析】
试题分析:甲的作法正确:
∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACN.
∵MN是AC的垂直平分线,∴AO=CO.
在△AOM和△CON中,∵∠MAO=∠NCO,AO=CO,∠AOM=∠CON,
∴△AOM≌△CON(ASA),∴MO=NO.∴四边形ANCM是平行四边形.
∵AC⊥MN,∴四边形ANCM是菱形.
乙的作法正确:如图,
∵AD∥BC,∴∠1=∠2,∠2=∠1.
∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠2.
∴∠1=∠3,∠5=∠1.∴AB=AF,AB=BE.∴AF=BE.
∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形.
∵AB=AF,∴平行四边形ABEF是菱形.
故选C.
4、A
【解析】
先过点A作AC⊥OB,根据△AOB是等腰三角形,求出OA=AB,OC=BC,再根据点B的坐标,求出OC的长,再根据勾股定理求出AC的值,从而得出点A的坐标.
【详解】
过点A作AC⊥OB,
∵△AOB是等腰三角形,
∴OA=AB,OC=BC,
∵AB=AO=5,BO=6,
∴OC=3,
∴AC=,
∴点A的坐标是(3,4).
故选:A.
此题考查了等腰三角形的性质,勾股定理,关键是作出辅助线,求出点A的坐标.
5、C
【解析】
由k<0,可得一次函数经过二、四象限,再由b>0,一次函数经过第一象限,即可得到直线不经过的象限.
【详解】
∵直线y=﹣3x+5经过第一、二、四象限,
∴不经过第三象限,
故选C.
本题考查了一次函数图象与系数的关系:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.
6、C
【解析】
A、平行四边形的对边相等,故本选项正确;
B、平行四边形的对边平行,故本选项正确;
C、平行四边形的对角相等不一定互补,故本选项错误;
D、平行四边形的内角和为360°,故本选项正确;故选C
7、A
【解析】
当AB=BC时,四边形DBFE是菱形.根据三角形中位线定理证明即可;当BE平分∠ABC时,可证BD=DE,可得四边形DBFE是菱形,当EF=FC,可证EF=BF,可得四边形DBFE是菱形,由此即可判断;
【详解】
解:当AB=BC时,四边形DBFE是菱形;
理由:∵点D、E、F分别是边AB、AC、BC的中点,
∴DE∥BC,EF∥AB,
∴四边形DBFE是平行四边形,
∵DE=BC,EF=AB,
∴DE=EF,
∴四边形DBFE是菱形.
故B正确,不符合题意,
当BE平分∠ABC时,∴∠ABE=∠EBC
∵DE∥BC,
∴∠CBE=∠DEB
∴∠ABE =∠DEB
∴BD=DE
∴四边形DBFE是菱形,
故C正确,不符合题意,
当EF=FC,
∵BF=FC
∴EF=BF,
∴四边形DBFE是菱形,
故D正确,不符合题意,
故选A.
本题考查三角形的中位线定理,平行四边形的判定和性质,菱形的判定等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.
8、A
【解析】
试题分析:k=﹣1<0,y将随x的增大而减小,根据﹣1<1即可得出答案.
解:∵k=﹣1<0,y将随x的增大而减小,
又∵﹣1<1,
∴y1>y1.
故选A.
【点评】本题考查一次函数的图象性质的应用,注意:一次函数y=kx+b(k、b为常数,k≠0),当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2或4.5
【解析】
根据题意,要使△AEF与△ABC相似,由于本题没有说明对应关系,故采用分类讨论法.有两种可能:当△AEF∽△ABC时;当△AEF∽△ACB时.最后利用相似三角形的对应边成比例即可求得线段AF的长即可.
【详解】
当△AEF∽△ABC时,则,AF=2;
当△AEF∽△ACB时,则,AF=4.5.
故答案为:2或4.5.
本题考查了相似三角形的性质应用.利用相似三角形性质时,要注意相似比的对应关系.分类讨论时,要注意对应关系的变化,防止遗漏.
10、1
【解析】
∵AM=AC,BN=BC,∴AB是△ABC的中位线,
∴AB=MN=1m,
故答案为1.
11、540
【解析】
过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形
∴正五边形的内角和=3180=540°
12、8
【解析】
【分析】根据菱形的面积等于对角线乘积的一半进行计算即可求得.
【详解】设另一条对角线的长为x,则有
=16,
解得:x=8,
故答案为8.
【点睛】本题考查了菱形的面积,熟知菱形的面积等于菱形对角线乘积的一半是解题的关键.
13、−12
【解析】
先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k的值.
【详解】
设菱形的两条对角线相交于点D,如图,
∵四边形ABCD为菱形,
又∵菱形的两条对角线的长分别是8和6,
∴OB⊥AC,BD=OD=3,CD=AD=4,
∵菱形ABCD的对角线OB在y轴上,
∴AC∥x轴,
∴C(−4,3),
∵点C在反比例函数y=的图象上,
∴3=,解得k=−12.
故答案为:−12.
本题考查反比例函数和菱形的性质,解题的关键是掌握菱形的性质.
三、解答题(本大题共5个小题,共48分)
14、(1)点D(4.5,2.5)是线段AB的“附近点”;
(2)m的取值范围是;
(3)b的取值范围是
【解析】
(1)点P是线段AB的“附近点”的定义即可判断.
(2)首先求出直线y=x-2与线段AB交于(,3)分①当m≥时,列出不等式即可解决问题.
(3)如图,在Rt△AMN中,AM=1,∠MAN=45°,则点M坐标(2-,3+),在Rt△BEF中,BE=1,∠EBF=45°,则点E坐标(6+,3-),
分别求出直线经过点M点E时的b的值,即可解决问题.
解:(1)∵点D到线段AB的距离是0.5,
∴0.5<1,
∴点D(4.5,2.5)是否是线段AB的“附近点”;
(2)∵点H(m,n)线段AB的“附加点”,点H(m,n)在直线y=x-2上,
∴n=m-2;
直线y=x-2 线段AB交于(,3).
①当m≥时,有n=m-2≥3,
又AB∥x轴,∴此时点H(m、n)到线段AB的距离是n-3.
∴0≤n-3,∴≤m≤5.
综上所述,≤m≤5.
(3)如图,在Rt△AMN中,AM=1,∠MAN=45°,则点M坐标(2-,3+),
在Rt△BEF中,BE=1,∠ENF=45°,则点E坐标(6+,3-),
当直线y=x+b经过点M时,b=1+,
当直线y=x+b经过点E时,b=-3-,
∴-3-≤b≤1+.
“点睛”本题考查一次函数综合题、线段AB的“附近点”的定义等知识,解题的关键是理解题意,学会分类讨论,学会利用特殊点解决问题,属于中档压轴题.
15、(1)见解析;(2)x=-3或x=1
【解析】
(1)用一元二次的根判别式判断即可;(2)观察得出a(x+2)2+bx+2b+c=0的解是原方程的解加2,从而解出方程
【详解】
(1)∵△=b2﹣4ac,
当a、c异号时,即ac<0,
∴△=b2﹣4ac>0,
∴该方程必有两个不相等的实数根;
(2)∵ax2+bx+c=0两根分别为x1=-1,x2=3,
∴方程a(x+2)2+bx+2b+c=a(x+2)2+b(x+2)+c=0中的x+2=-1或x+2=3
解得x=-3或x=1
熟练掌握一元二次方程根的判别式是解决本题的关键,(2)通过两根不能算出啊,b,c的值则要观察题上两方程之间的关系
16、(1)见解析;(2)当时,四边形OCED为正方形,见解析.
【解析】
(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,由矩形的性质可得OE=DC;
(2)当∠ABC=90°时,四边形OCED是正方形,根据正方形的判定方法证明即可.
【详解】
解:(1)证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是菱形,
∴∠COD=90°,
∴四边形OCED是矩形,
∴OE=DC;
(2)当∠ABC=90°时,四边形OCED是正方形,
理由如下:
∵四边形ABCD是菱形,∠ABC=90°,
∴四边形ABCD是正方形,
∴DO=CO,
又∵四边形OCED是矩形,
∴四边形OCED是正方形.
本题考查了菱形的性质,矩形的判定与性质,正方形的判定和性质,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.
17、见解析.
【解析】
由题意可证△AEM≌△FNC,可得结论.
【详解】
∵四边形ABCD是平行四边形
∴BE∥DF,AD∥BC
∴∠E=∠F,∠AME=∠BNE
又∵∠BNE=∠CNF
∴∠AME=∠CNF
在△AEM和OCFN中
∴ΔAEM≌ΔCFN(AAS)
∴AM=CN.
考查了平行四边形的性质,全等三角形的性质和判定,灵活运用这些性质解决问题是本题的关键.
18、(1)见解析;(2)-1.
【解析】
(1)根据方程的系数结合根的判别式即可得出△=m2+12≥12,由此即可得出结论.
(2)将x=3代入原方程求出m值,再将m得值代入原方程利用十字相乘法即可求出方程的另一根,或者直接利用两根之积等于-3可得.
【详解】
解:(1)∵在方程x2-mx-3=0中,△=(-m)2-4×1×(-3)=m2+12≥12,
∴对于任意实数m,方程总有两个不相等的实数根.
(2)方法一:将x=3代入x2-mx-3=0中,得:9-3m-3=0,
解得:m=2,
当m=2时,原方程为x2-2x-3=(x+1)(x-3)=0,
解得:x1=-1,x2=3,
∴方程的另一根为-1.
方法二:设方程的另一个根为a,
则3a=-3,
解得:a=-1,
即方程的另一根为-1.
本题考查了根的判别式及根与系数的关系,掌握x1+x2=-,x1•x2=与判别式的值与方程的解得个数的关系是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、150, 60
【解析】
分析:回到出发点O点时,所经过的路线正好构成一个外角是30°的正多边形,根据正多边形的性质即可解答.
详解:由题意可知小亮的路径是一个正多边形,
∵每个外角等于30°,
∴每个内角等于150°.
∵正多边形的外角和为360°,
∴正多边形的边数为360°÷30°=12(边).
∴小亮走的周长为5×12=60.
点睛:本题主要考查了多边形的内角与外角,牢记多边形的内角与外角概念是解题关键.
20、0.1.
【解析】
根据表格中实验的频率,然后根据频率即可估计概率.
【详解】
解:由击中靶心频率都在0.1上下波动,
∴该射手击中靶心的概率的估计值是0.1.
故答案为:0.1.
本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.
21、1
【解析】
【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.
【详解】∵数据6,x,3,3,5,1的众数是3和5,
∴x=5,
则这组数据为1、3、3、5、5、6,
∴这组数据的中位数为=1,
故答案为:1.
【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.
22、630
【解析】
分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.
详解:设甲车,乙车的速度分别为x千米/时,y千米/时,
甲车与乙车相向而行5小时相遇,则5(x+y)=900,解得x+y=180,
相遇后当甲车到达B地时两车相距720千米,所需时间为720÷180=4小时,
则甲车从A地到B需要9小时,故甲车的速度为900÷9=100千米/时,乙车的速度为180-100=80千米/时,
乙车行驶900-720=180千米所需时间为180÷80=2.25小时,
甲车从B地到A地的速度为900÷(16.5-5-4)=120千米/时.
所以甲车从B地向A地行驶了120×2.25=270千米,
当乙车到达A地时,甲车离A地的距离为900-270=630千米.
点睛:利用函数图象解决实际问题,其关键在于正确理解函数图象横,纵坐标表示的意义,抓住交点,起点.终点等关键点,理解问题的发展过程,将实际问题抽象为数学问题,从而将这个数学问题变化为解答实际问题.
23、
【解析】
分析:由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.
详解:∵四边形ABCD是矩形,
∴∠BCD=90°,AB∥CD,AD∥BC,
∴∠FEA=∠ECD,∠DAC=∠ACB=21°,
∵∠ACF=∠AFC,∠FAE=∠FEA,
∴∠ACF=2∠FEA,
设∠ECD=x,则∠ACF=2x,
∴∠ACD=3x,
∴3x+21°=90°,
解得:x=23°.
故答案为:23°.
点睛:本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形的性质和平行线的性质是解决问题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)如果超市在进价的基础上提高5%作为售价,则亏本1元;(2)该水果的售价至少为2.1元/千克.
【解析】
(1)根据利润=销售收入-成本,即可求出结论;
(2)根据利润=销售收入-成本结合该水果的利润率不得低于11%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.
【详解】
(1)2×(1+5%)×200×(1﹣5%)﹣100=﹣1(元).
答:如果超市在进价的基础上提高5%作为售价,则亏本1元.
(2)设该水果的售价为x元/千克,
根据题意得:200×(1﹣5%)x﹣200×2≥200×2×11%,
解得:x≥2.1.
答:该水果的售价至少为2.1元/千克.
本题考查了一元一次不等式的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据各数量间的关系,正确列出一元一次不等式.
25、(1)9(2)9+2.
【解析】
分析:(1)、根据二次根式的化简法则将各式进行化简,然后进行求和得出答案;(2)、根据完全平方公式将括号去掉,然后进行计算得出答案.
详解:(1)原式=10﹣3+2=9;
(2)原式=9+4﹣2=9+2.
点睛:本题主要考查的是二次根式的计算法则,属于基础题型.明确二次根式的化简法则是解决这个问题的关键.
26、(1)证明见解析;(2)1s;(2)8s.
【解析】
分析:(1)由∠DFC=90°,∠C=30°,证出DF=2t=AE;
(2)当四边形BEDF是矩形时,△DEF为直角三角形且∠EDF=90°,求出t的值即可;
(3)先证明四边形AEFD为平行四边形.得出AB=3,AD=AC-DC=48-4t,若△DEF为等边三角形,则四边形AEFD为菱形,得出AE=AD,2t=48-4t,求出t的值即可;
详解:(1)在Rt△CDF中,∠C=30°,
∴DF=CD,
∴DF=•4t=2t,
又∵AE=2t,
∴AE=DF.
(2)当四边形BFDE是矩形时,有BE=DF,
∵Rt△ABC中,∠C=30°
∴AB=AC=×48=24,
∴BE=AB-AE=24-2t,
∴24-2t=2t,
∴t=1.
(3)∵∠B=90°,DF⊥BC
∴AE∥DF,∵AE=DF,
∴四边形AEFD是平行四边形,
由(1)知:四边形AEFD是平行四边形
则当AE=AD时,四边形AEFD是菱形
∴2t=48-4t,
解得t=8,又∵t≤==12,
∴t=8适合题意,
故当t=8s时,四边形AEFD是菱形.
点睛:本题是四边形综合题,主要考查了平行四边形、菱形、矩形的性质与判定以及锐角三角函数的知识,考查学生综合运用定理进行推理和计算的能力.
题号
一
二
三
四
五
总分
得分
河南省信阳市平桥区明港镇2024年九上数学开学经典模拟试题【含答案】: 这是一份河南省信阳市平桥区明港镇2024年九上数学开学经典模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省濮阳市名校2024年数学九上开学经典模拟试题【含答案】: 这是一份河南省濮阳市名校2024年数学九上开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省漯河市名校2024年九上数学开学经典模拟试题【含答案】: 这是一份河南省漯河市名校2024年九上数学开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。