黑龙江省牡丹江一中学2025届数学九年级第一学期开学检测试题【含答案】
展开
这是一份黑龙江省牡丹江一中学2025届数学九年级第一学期开学检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数的图象如图所示,当时,x的取值范围是
A.B.C.D.
2、(4分)若2019个数、、、…、满足下列条件:,,,…,,则( )
A.-5047B.-5045C.-5040D.-5051
3、(4分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=1DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正确结论的个数是( )
A.1B.2C.1D.4
4、(4分)教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为( )
A.B.C.D.
5、(4分)如图所示,在直角中,,,,是边的垂直平分线,垂足为,交边于点,连接,则的周长为( )
A.16B.15C.14D.13
6、(4分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )
A.AC=BDB.∠CAB=∠DBAC.∠C=∠DD.BC=AD
7、(4分)如图,△ABC以点C为旋转中心,旋转后得到△EDC,已知AB=1.5,BC=4,AC=5,则DE=( )
A.1.5B.3C.4D.5
8、(4分)下列运算正确的是( )
A.B.(m2)3=m5C.a2•a3=a5D.(x+y)2=x2+y2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,连结AC、BD,回答问题
(1)对角线AC、BD满足条件_____时,四边形EFGH是矩形.
(2)对角线AC、BD满足条件_____时,四边形EFGH是菱形.
(3)对角线AC、BD满足条件_____时,四边形EFGH是正方形.
10、(4分)_______.
11、(4分)如图,,要使四边形ABCD成为平行四边形还需要添加的条件是______只需写出一个即可
12、(4分)已知方程ax2+7x﹣2=0的一个根是﹣2,则a的值是_____.
13、(4分)不等式4﹣3x>2x﹣6的非负整数解是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知如图,在正方形中,为的中点,,平分并交于.求证:
15、(8分)解方程:
(1);
(2).
16、(8分)如图,直线分别与轴交于点,与轴交于点,与双曲线交于点.
(1)求与的值;
(2)已知是轴上的一点,当时,求点的坐标.
17、(10分)如图,在□ABCD中,AC交BD于点O,点E,点F分别是OA,OC的中点。求证:四边形BEDF为平行四边形
18、(10分)计算:(1—)×+
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,△ABC,∠A=90°,AB=AC.在△ABC内作正方形A1B1C1D1,使点A1,B1分别在两直角边AB,AC上,点C1,D1在斜边BC上,用同样的方法,在△C1B1B内作正方形A2B2C2D2;在△CB2C2内作正方形A3B3C3D3……,若AB=1,则正方形A2018B2018C2018D2018的边长为_____.
20、(4分)如图,在己知的中,按以一下步骤作图:①分别以为圆心,大于的长为半径作弧,相交于两点;②作直线交于点,连接.若,,则的度数为___________.
21、(4分)点M(a,﹣5)与点N(﹣2,b)关于x轴对称,则a+b=________.
22、(4分)抛物线有最_______点.
23、(4分)如图,正方形的边长为,点,分别在边,上,若是的中点,且,则的长为_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在□ABCD中,E、F为对角线BD上的两点,且∠DAE=∠BCF.
(1)求证:AE=CF;
(2)求证:AE∥CF.
25、(10分)如图,是的中线,,交于点,是的中点,连接.
(1)求证:四边形是平行四边形;
(2)若四边形的面积为,请直接写出图中所有面积是的三角形.
26、(12分)感知:如图①,在正方形中,点在对角线上(不与点、重合),连结、,过点作,交边于点.易知,进而证出.
探究:如图②,点在射线上(不与点、重合),连结、,过点作,交的延长线于点.求证:.
应用:如图②,若,,则四边形的面积为________.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
解:由图像可知, 当时,x的取值范围是.
故选A.
2、A
【解析】
通过前面几个数的计算,根据数的变化可得出从第3个数开始,按-2,-3依次循环,按此规律即可得出的值,
【详解】
解:依题意,得:,
,
,
,
,
,
……
由上可知,这2019个数从第三个数开始按−2,−3依次循环,
故这2019个数中有1个2,1个−7,1009个−2,1008个−3,
∴=2−7−2×1009−3×1008=−5047,
故选:A.
本题主要考查了规律型:数字的变化类,找到规律是解题的关键.
3、C
【解析】
根据正方形基本性质和相似三角形性质进行分析即可.
【详解】
①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;
②正确.因为:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=1.所以BG=1=6﹣1=GC;
③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,
∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;
④错误.
过F作FH⊥DC,
∵BC⊥DH,
∴FH∥GC,
∴△EFH∽△EGC,
∴
EF=DE=2,GF=1,
∴EG=5,
∴
∴S△FGC=S△GCE﹣S△FEC=
故选C.
考核知识点:相似三角形性质.
4、A
【解析】
先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x-1)场,再根据题意列出方程为.
【详解】
解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,
∴共比赛场数为,
故选:A.
本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.
5、A
【解析】
首先连接AE,由在直角△ABC中,∠BAC=90°,AB=8,AC=6,利用勾股定理即可求得BC的长,又由DE是AB边的垂直平分线,根据线段垂直平分线的性质,即可得AE=BE,继而可得△ACE的周长为:BC+AC.
【详解】
连接AE,
∵在Rt△ABC中,∠BAC=90∘,AB=8,AC=6,
∴BC=
∵DE是AB边的垂直平分线,
∴AE=BE,
∴△ACE的周长为:AE+EC+AC=BE+CE+AC=BC+AC=10+6=16,
故选A.
本题考查勾股定理,熟练掌握勾股定理的性质是解题关键.
6、A
【解析】
根据全等三角形的判定:SAS,AAS,ASA,可得答案.
【详解】
解:由题意,得∠ABC=∠BAD,AB=BA,
A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;
B、在△ABC与△BAD中, ,△ABC≌△BAD(ASA),故B正确;
C、在△ABC与△BAD中, ,△ABC≌△BAD(AAS),故C正确;
D、在△ABC与△BAD中, ,△ABC≌△BAD(SAS),故D正确;
故选:A.
本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
7、A
【解析】
根据旋转的性质,得出△ABC≌△EDC,再根据全等三角形的对应边相等即可得出结论.
【详解】
由旋转可得,△ABC≌△EDC,
∴DE=AB=1.5,
故选A.
本题主要考查了旋转的性质的运用,解题时注意:旋转前、后的图形全等.
8、C
【解析】
A、=3,本选项错误;
B、(m2)3=m6,本选项错误;
C、a2•a3=a5,本选项正确;
D、(x+y)2=x2+y2+2xy,本选项错误,
故选C
二、填空题(本大题共5个小题,每小题4分,共20分)
9、AC⊥BD AC=BD AC⊥BD且AC=BD
【解析】
先证明四边形EFGH是平行四边形,
(1)在已证平行四边形的基础上,要使所得四边形是矩形,则需要一个角是直角,故对角线应满足互相垂直
(2)在已证平行四边形的基础上,要使所得四边形是菱形,则需要一组邻边相等,故对角线应满足相等
(3)联立(1)(2),要使所得四边形是正方形,则需要对角线垂直且相等
【详解】
解:连接AC、BD.
∵E、F、G、H分别是AB、BC、CD、DA边上的中点,
∴EF∥AC,EF=AC,FG∥BD,FG=BD,GH∥AC,GH=AC,EH∥BD,EH=BD.
∴EF∥HG,EF=GH,FG∥EH,FG=EH.
∴四边形EFGH是平行四边形;
(1)要使四边形EFGH是矩形,则需EF⊥FG,
由(1)得,只需AC⊥BD;
(2)要使四边形EFGH是菱形,则需EF=FG,
由(1)得,只需AC=BD;
(3)要使四边形EFGH是正方形,综合(1)和(2),
则需AC⊥BD且AC=BD.
故答案是:AC⊥BD;AC=BD;AC⊥BD且AC=BD
此题主要考查平行四边形,矩形,菱形以及正方形的判定条件
10、1
【解析】
用配方法解题即可.
【详解】
故答案为:1.
本题主要考查配方法,掌握规律是解题关键.
11、或
【解析】
已知,可根据有一组边平行且相等的四边形是平行四边形来判定,也可根据两组对边分别平行的四边形是平行四边形来判定.
【详解】
在四边形ABCD中,,
可添加的条件是:,
四边形ABCD是平行四边形一组对边平行且相等的四边形是平行四边形.
在四边形ABCD中,,
可添加的条件是:,
四边形ABCD是平行四边形两组对边分别的四边形是平行四边形.
故答案为或.(答案不唯一,只要符合题意即可)
本题主要考查了平行四边形的判定方法,常用的平行四边形的判定方法有:两组对边分别平行的四边形是平行四边形两组对边分别相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形两组对角分别相等的四边形是平行四边形对角线互相平分的四边形是平行四边形.
12、1
【解析】
根据一元二次方程的解的定义,将x=﹣2代入已知方程,通过一元一次方程来求a的值.
【详解】
解:根据题意知,x=﹣2满足方程ax2+7x﹣2=0,则1a﹣11﹣2=0,即1a﹣16=0,
解得,a=1.
故答案是:1.
考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
13、0,2
【解析】
求出不等式2x+2>3x﹣2的解集,再求其非负整数解.
【详解】
解:移项得,﹣2x﹣3x>﹣6﹣4,
合并同类项得,﹣5x>﹣20,
系数化为2得,x<2.
故其非负整数解为:0,2.
本题考查了一元一次不等式的整数解,解答此题不仅要明确不等式的解法,还要知道非负整数的定义.解答时尤其要注意,系数为负数时,要根据不等式的性质3,将不等号的方向改变.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
取DA的中点F,连接FM,根据正方形的性质可得DA=AB,∠A=∠ABC=∠CBE=90°,然后利用ASA即可证出△DFM≌△MBN,再根据全等三角形的性质即可得出结论.
【详解】
解:取DA的中点F,连接FM
∵四边形是正方形
∴DA=AB,∠A=∠ABC=∠CBE=90°
∴∠FDM+∠AMD=90°
∵
∴∠BMN+∠AMD=90°
∴∠FDM=∠BMN
∵点F、M分别是DA、AB的中点
∴DF=FA=DA=AB=AM=MB
∴△AFM为等腰直角三角形
∴∠AFM=45°
∴∠DFM=180°-∠AFM=135°
∵平分
∴∠CBN==45°
∴∠MBN=∠ABC+∠CBN=135°
∴∠DFM=∠MBN
在△DFM和△MBN中
∴△DFM≌△MBN
∴
此题考查的是正方形的性质和全等三角形的判定及性质,掌握正方形的性质和构造全等三角形的方法是解决此题的关键.
15、 (1),; (2) ,
【解析】
(1)运用因式分解法求解即可;
(2)运用公式法求解即可.
【详解】
(1)
,
(2)
∵a=2,b=3,c=-1
∴Δ=9-4×2×(-1)=17>0
,
此题考查解一元二次方程,熟练掌握各种解法适用的题型,选择合适的方法解题是关键.
16、(1)12;(2)或.
【解析】
(1)把点(4,m)代入直线求得m,然后代入与反比例函数,求出k;
(2)设点P的纵坐标为y,一次函数与x轴相交于点A,与y轴相交于点C,则A(-2,0),C(0,1),然后根据S△ABP=S△APC+S△BPC列出关于y的方程,解方程求得即可.
【详解】
解:(1)点在一次函数上,
,
又点在反比例函数上,
;
(2)设点的纵坐标为,一次函数与轴相交于点,与轴相交于点,
,,
又点在轴上,,
,即,
,
或
或.
本题考查的是反比例函数的图象与一次函数图象的交点问题,三角形的面积等知识,求出交点坐标,利用数形结合思想是解题的重点.
17、见解析;
【解析】
欲证明四边形BFDE是平行四边形只要证明OE=OF,OD=OB.
【详解】
证明:∵四边形ABCD是平行四边形
∴AO=CO,BO=DO .
又∵点E,点F分别是OA,OC的中点
∴EO=,FO=
∴EO=FO
∴四边形BEDF为平行四边形
本题考查了平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质.
18、
【解析】
原式各项化为最简二次根式后,先算乘法后算加减,合并可得到结果.
【详解】
解:原式=
=
此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、×()1.
【解析】
已知正方形A1B1C1D1的边长为,然后得到正方形A2B2C2D2的边长为
,然后得到规律,即可求解.
【详解】
解:∵正方形A1B1C1D1的边长为,
正方形A2B2C2D2的边长为
正方形A3B3C3D3的边长为,
…,
正方形A2018B2018C2018D2018的边长为.
故答案为.
本题考查了等腰直角三角形的性质和正方形的性质,解题关键是灵活应用等腰直角三角形三边的关系进行几何计算.
20、105°
【解析】
根据垂直平分线的性质,可知,BD=CD,进而,求得∠BCD的度数,由,,可知,∠ACD=80°,即可得到结果.
【详解】
根据尺规作图,可知,MN是线段BC的中垂线,
∴BD=CD,
∴∠B=∠BCD,
又∵,
∴∠A=∠ADC=50°,
∵∠B+∠BCD=∠ADC=50°,
∴∠BCD==25°,
∵∠ACD=180°-∠A-∠ADC=180°-50°-50°=80°,
∴=∠BCD+∠ACD=25°+80°=105°.
本题主要考查垂直平分线的性质定理以及等腰三角形的性质定理与三角形外角的性质,求出各个角的度数,是解题的关键.
21、2
【解析】
试题解析:∵点M(a,-5)与点N(-1,b)关于x轴对称,
∴a=-1.b=5,
∴a+b=-1+5=2.
点睛:关于x轴、y轴对称的点的坐标特征:点P(a,b)关于x轴对称的点的坐标为(a,-b),关于y轴对称的点的坐标为(-a,b).
22、低
【解析】
因为:,根据抛物线的开口向上可得答案.
【详解】
解:因为:,所以根据抛物线的开口向上,抛物线图像有最低点.
故答案:低.
本题考查的符号决定抛物线的图像的开口方向,掌握抛物线的图像特点是解题关键.
23、4
【解析】
延长F至G,使CG=AE,连接DG,由SAS证明△ADE≌△CDG,得出DE=DG,∠ADE=∠CDG,再证明△EDF≌△GDF,得出EF=GF,设AE=CG=x,则EF=GF=3+x,在Rt△BEF中,由勾股定理得出方程,解方程得出AE=2,从而求得BE的长即可.
【详解】
解:延长F至G,使CG=AE,连接DG、EF,如图所示:
∵四边形ABCD是正方形,
∴AD=AB=BC=CD=6,∠A=∠B=∠DCF=∠ADC=90°,
∴∠DCG=90°,
在△ADE和△CDG中,,
∴△ADE≌△CDG(SAS),
∴DE=DG,∠ADE=∠CDG,
∴∠EDG=∠CDE+∠CDG=∠CDE+∠ADE=90°,
∵∠EDF=45°,
∴∠GDF=45°,
在△EDF和△GDF中,,
∴△EDF≌△GDF(SAS),
∴EF=GF,
∵F是BC的中点,
∴BF=CF=3,
设AE=CG=x,则EF=GF=CF+CG=3+x,
在Rt△BEF中,由勾股定理得:,
解得:x=2,即AE=2,
∴BE=AB-AE=6-2=4.
此题考查了正方形的性质,全等三角形的判定与性质以及勾股定理,利用了方程的思想,证明三角形全等是解本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析(2)证明见解析
【解析】
试题分析:(1)根据平行四边形性质得出AB=DC,AD=BC,AB∥CD,AD∥BC,推出∠ABF=∠CDE,∠ADE=∠CBF,根据全等三角形的判定推出△DAE≌△BCF,即可得;
(2)由△DAE≌△BCF,得出∠DEA=∠BFC,从而得∠AEF=∠DFC,继而得AE∥CF.
试题解析:(1)∵四边形ABCD是平行四边形,
∴AB=DC,AD=BC,AB∥CD,AD∥BC,
∴∠ABF=∠CDE,∠ADE=∠CBF,
在△DAE和△BCF中,,
∴△DAE≌△BCF(ASA),∴AE=CF;
(2)∵△DAE≌△BCF,∴∠DEA=∠BFC,∴∠AEF=∠DFC,∴AE∥CF.
25、(1)见解析;(2),,,
【解析】
(1)首先证明△AFE≌△DFB可得AE=BD,进而可证明AE=CD,再由AE∥BC可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE是平行四边形;
(2)根据面积公式解答即可.
【详解】
证明:∵AD是△ABC的中线,
∴BD=CD,
∵AE∥BC,
∴∠AEF=∠DBF,
在△AFE和△DFB中,
,
∴△AFE≌△DFB(AAS),
∴AE=BD,
∴AE=CD,
∵AE∥BC,
∴四边形ADCE是平行四边形;
(2)∵四边形ABCE的面积为S,
∵BD=DC,
∴四边形ABCE的面积可以分成三部分,即△ABD的面积+△ADC的面积+△AEC的面积=S,
∴面积是S的三角形有△ABD,△ACD,△ACE,△ABE.
此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
26、探究:见解析;应用:
【解析】
探究:由四边形是正方形易证.可得,,由及.可得. 可得即可证;
应用:连结,可得三角形DEF是等腰三角形,利用勾股定理,分别求DF、FC的长度,再别求和的面积即可.
【详解】
探究:四边形是正方形,
,.
.
又,
.
,.
,
.
.
又.
.
.
.
应用: (提示:连结,分别求和的面积)
连结
由=2,∠FED=90°由勾股定理可得:FD= 可得:
∵CD=1,∠FCD=90°由勾股定理可得:FC= 可得:
∴
本题考查了正方形的性质、三角形全等以及勾股定理的运用,灵活运用正方形性质和利用勾股定理计算长度是解题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份黑龙江省鸡东县平阳中学2025届数学九年级第一学期开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份黑龙江省大庆市三站中学2025届数学九年级第一学期开学检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届黑龙江省牡丹江市数学九年级第一学期开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。