黑龙江省大庆市三站中学2025届数学九年级第一学期开学检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为( )
A.(﹣,2)B.(﹣3,)C.(﹣2,2)D.(﹣3,2)
2、(4分)要使分式有意义,x应满足的条件是( )
A.B.C.D.
3、(4分)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:
关于以上数据,说法正确的是( )
A.甲、乙的众数相同B.甲、乙的中位数相同
C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差
4、(4分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )
A.0.7米B.1.5米C.2.2米D.2.4米
5、(4分)用配方法解方程,经过配方,得到()
A.B.C.D.
6、(4分)如图,下列能判定AB∥CD的条件的个数是( )
①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠1.
A.1个B.2个C.3个D.4个
7、(4分)如图,已知正方形 ABCD 的边长为 1,以顶点 A、B 为圆心,1 为半径的两弧交于点 E, 以顶点 C、D 为圆心,1 为半径的两弧交于点 F,则 EF 的长为 ( )
A.B.C.D.
8、(4分)由线段a、b、c组成的三角形不是直角三角形的是
A.,,B.,,
C.,,D.,,
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,,,,过点作,垂足为,则的长度是______.
10、(4分)如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,点G是EF的中点,连接CG、BG、BD、DG,下列结论:① BC=DF,②∠DGF=135;③BG⊥DG,④ 若3AD=4AB,则4S△BDG=25S△DGF;正确的是____________(只填番号).
11、(4分)如果关于的不等式组无解,则的取值范围是_____.
12、(4分)若一个正多边形的每一个外角都是,则这个正多边形的边数为__________.
13、(4分)某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打_____折.
三、解答题(本大题共5个小题,共48分)
14、(12分)在平面直角坐标系中,直线l1:y=x+5与反比例函数y=(k≠0,x>0)图象交于点A(1,n);另一条直线l2:y=﹣2x+b与x轴交于点E,与y轴交于点B,与反比例函数y=(k≠0,x>0)图象交于点C和点D(,m),连接OC、OD.
(1)求反比例函数解析式和点C的坐标;
(2)求△OCD的面积.
15、(8分)商场销售一批衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(2)要使商场平均每天盈利1600元,可能吗?请说明理由.
16、(8分)解方程.
17、(10分)某河流防污治理工程已正式启动,由甲队单独做5个月后,乙队再加入合作3个月就可以完成这项工程。已知若甲队单独做需要10个月可以完成。
(1)乙队单独完成这项工程需要几个月?
(2)已知甲队每月施工费用为15万元,比乙队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲队做a个月,乙队做b个月(a、b均为整数)分工合作的方式施工,问有哪几种施工方案?
18、(10分) “四书五经”是中国的“圣经”,“四书五经”是《大学》、《中庸》、《论语》和《孟子》(四书)及《诗经》、《尚书》、《易经》、《礼记》、《春秋》(五经)的总称,这是一部被中国人读了几千年的教科书,包含了中国古代的政治理想和治国之道,是我们了解中国古代社会的一把钥匙,学校计划分阶段引导学生读这些书,计划先购买《论语》和《孟子》供学生使用,已知用500元购买《孟子》的数量和用800元购买《论语》的数量相同,《孟子》的单价比《论语》的单价少15元.
(1)求《论语》和《孟子》这两种书的单价各是多少?
(2)学校准备一次性购买这两种书本,但总费用不超过元,那么这所学校最多购买多少本《论语》?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:
由表格中y与t的关系可知,当汽车行驶________小时,油箱的余油量为1.
20、(4分)若,时,则的值是__________.
21、(4分)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2; …;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=_____.
22、(4分)如图,在△ABC中,∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,分别交AB,AC于点D,E,若BC=2,则DE=___.
23、(4分)如图,平行四边形ABCD中,AE⊥CD于E,∠B=50°,则∠DAE= ______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线y=x+1与x,y轴交于点A,B,直线y=-2x+4与x,y轴交于点D,C,这两条直线交于点E.
(1)求E点坐标;
(2)若P为直线CD上一点,当△ADP的面积为9时,求P的坐标.
25、(10分)甲、乙两名射击运动员各进行10次射击,甲的成绩是7,7,8,1,8,1,10,1,1,1.乙的成绩如图所示(单位:环)
(1)分别计算甲、乙两人射击成绩的平均数;
(2)若要选拔一人参加比赛,应派哪一位?请说明理由.
26、(12分)如图,G是线段AB上一点,AC和DG相交于点E.
(1)请先作出∠ABC的平分线BF,交AC于点F;(尺规作图,保留作图痕迹,不写作法与证明)
(2)然后证明当:AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.
【详解】
∵直线y=-x+4与x轴、y轴分别交于A、B两点,
∴点A的坐标为(3,0),点B的坐标为(0,4).
过点C作CE⊥y轴于点E,如图所示.
∵BC=OC=OA,
∴OC=3,OE=2,
∴CE= ,
∴点C的坐标为(-,2).
故选A.
考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.
2、D
【解析】
直接利用分式有意义的条件,即分母不等于0,进而得出答案.
【详解】
解:要使分式有意义,x应满足的条件是:x-1≠0,
解得:x≠1.
故选:D.
本题考查分式有意义的条件,正确把握分式有意义的条件是解题关键.
3、D
【解析】
分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.
【详解】
甲:数据7出现了2次,次数最多,所以众数为7,
排序后最中间的数是7,所以中位数是7,
,
=4.4,
乙:数据8出现了2次,次数最多,所以众数为8,
排序后最中间的数是4,所以中位数是4,
,
=6.4,
所以只有D选项正确,
故选D.
本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.
4、C
【解析】
在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.
【详解】
在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.
本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.
5、B
【解析】
按照配方法的步骤,先把常数项移到右侧,然后在两边同时加上一次项系数一半的平方,配方即可.
【详解】
x2+3x+1=0,
x2+3x=-1,
x2+3x+=-1+,
,
故选B.
本题考查了解一元二次方程——配方法,熟练掌握配方法的步骤以及要求是解题的关键.
6、B
【解析】
根据平行线的判定定理分别进行判断即可.
【详解】
解:①当∠B+∠BCD=180°,AB∥CD,故正确;
②当∠3=∠2时,AB=BC,故错误;
③当∠1=∠4时,AD=DC,故错误;
④当∠B=∠1时,AB∥CD,故正确.
所以正确的有2个
故选:B.
本题主要考查平行线的判定,掌握平行线的判定方法是解题的关键.
7、D
【解析】
连接AE,BE,DF,CF,可证明三角形AEB是等边三角形,利用等边三角形的性质和勾股定理即可求出边AB上的高线,同理可求出CD边上的高线,进而求出EF的长.
【详解】
解:连接AE,BE,DF,CF.
∵以顶点A、B为圆心,1为半径的两弧交于点E,AB=1,
∴AB=AE=BE,
∴△AEB是等边三角形,
∴边AB上的高线为EN=
,
延长EF交AB于N,并反向延长EF交DC于M,则E、F、M,N共线,
则EM=1-EN=1-,
∴NF=EM=1-,
∴EF=1-EM-NF=-1.
故选:D.
本题考查正方形的性质和等边三角形的判定和性质以及勾股定理的运用,解题的关键是添加辅助线构造等边三角形,利用等边三角形的性质解答即可.
8、D
【解析】
A、72+242=252,符合勾股定理的逆定理,是直角三角形;
B、42+52=()2,符合勾股定理的逆定理,是直角三角形;
C、12+()2=()2,符合勾股定理的逆定理,是直角三角形;
D、()2+()2≠()2,不符合勾股定理的逆定理,不是直角三角形.
故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由已知可得Rt△ABC是等腰直角三角形,且,得出CD=AD=BD=AB=1.
【详解】
∵CA=CB.∠ACB=90°,CD⊥AB,
∴AD=DB,
∴CD=AB=1,
故答案为1.
本题考查了等腰直角三角形的性质,直角三角形斜边中线的性质,解题的关键是灵活运用等腰直角三角形的性质求边的关系.
10、①③④
【解析】
根据矩形的性质得:BC=AD,∠BAD=∠ADC=90°,由角平分线可得△ADF是等腰直角三角形,则BC=DF=AD,故①正确;
先求出∠BAE=45°,判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AB=BE,∠AEB=45°,从而得到BE=CD;再求出△CEF是等腰直角三角形,根据等腰直角三角形的性质可得CG=EG,再求出∠BEG=∠DCG=135°,然后利用“边角边”证明△BEG≌△DCG,得到∠BGE=∠DGC,由∠BGE<∠AEB,得到∠DGC=∠BGE<45°,∠DGF<135°,故②错误;
由全等三角形的性质可得∠BGE=∠DGC,即可得到③正确;
由△BGD是等腰直角三角形得到BD=5a,求得S△BDG,过G作GM⊥CF于M,求得S△DGF,进而得出答案.
【详解】
∵四边形ABCD是矩形,∴BC=AD,∠BAD=∠ADC=90°.
∵AF平分∠BAD,∴∠BAE=∠DAF=45°,∴△ADF是等腰直角三角形,∴DF=AD,∴BC=DF,故选项①正确;
∵AE平分∠BAD,∴∠BAE=45°,∴△ABE是等腰直角三角形,∴AB=BE,∠AEB=45°.
∵AB=CD,∴BE=CD;
∵∠CEF=∠AEB=45°,∠ECF=90°,∴△CEF是等腰直角三角形.
∵点G为EF的中点,∴CG=EG,∠FCG=45°,∴∠BEG=∠DCG=135°.
在△BEG和△DCG中,∵,∴△BEG≌△DCG(SAS),∴∠BGE=∠DGC.
∵∠BGE<∠AEB,∴∠DGC=∠BGE<45°.
∵∠CGF=90°,∴∠DGF<135°,故②错误;
∵△BEG≌△DCG,∴∠BGE=∠DGC,BG=DG.
∵∠EGC=90°,∴∠BGD=90°,∴BG⊥DG,故③正确;
∵3AD=4AB,∴,∴设AB=3a,则AD=4a.
∵BD=5a,∴BG=DGa,∴S△BDGa1.
过G作GM⊥CF于M.
∵CE=CF=BC﹣BE=BC﹣AB=a,∴GMCFa,∴S△DGF•DF•GM4aa=a1,∴S△BDGS△DGF,∴4S△BDG=15S△DGF,故④正确.
故答案为①③④.
本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等和等腰直角三角形是解决问题的关键.
11、a≤1.
【解析】
分别求解两个不等式,当不等式“大大小小”时不等式组无解,
【详解】
解:
∴不等式组的解集是
∵不等式组无解,即,
解得:
本题考查了求不等式组的解集和不等式组无解的情况,属于简单题,熟悉无解的含义是解题关键.
12、1
【解析】
根据正多边形的每一个外角都相等以及多边形的外角和为360°,多边形的边数=360°÷30°,计算即可求解.
【详解】
解:这个正多边形的边数:360°÷30°=1,
故答案为:1.
本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.
13、1.1.
【解析】
设打x折,则售价是500×元.根据利润率不低于10%就可以列出不等式,求出x的范围.
【详解】
解:要保持利润率不低于10%,设可打x折.
则500×-400≥400×10%,
解得x≥1.1.
故答案是:1.1.
本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)y=,点C(6,1);(2).
【解析】
(1)点A(1,n)在直线l1:y=x+5的图象上,可求点A的坐标,进而求出反比例函数关系式,点D在反比例函数的图象上,求出点D的坐标,从而确定直线l2:y=﹣2x+b的关系式,联立求出直线l2与反比例函数的图象的交点坐标,确定点C的坐标,
(2)求出直线l2与x轴、y轴的交点B、E的坐标,利用面积差可求出△OCD的面积.
【详解】
解:(1)∵点A(1,n)在直线l1:y=x+5的图象上,
∴n=6,
∴点A(1,6)代入y=得,
k=6,
∴反比例函数y=,
当x=时,y=12,
∴点D(,12)代入直线l2:y=﹣2x+b得,
b=13,
∴直线l2:y=﹣2x+13,
由题意得:解得:,,
∴点C(6,1)
答:反比例函数解析式y=,点C的坐标为(6,1).
(2)直线l2:y=﹣2x+13,与x轴的交点E(,0)与y轴的交点B(0,13)
∴S△OCD=S△BOE﹣S△BOD﹣S△OCE
答:△OCD的面积为.
本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题、以及反比例函数与几何面积的求解,解题的关键是灵活处理反比例函数与一次函数及几何的关系.
15、(1)每件衬衫应降价1元.(2)不可能,理由见解析
【解析】
(1)利用衬衣每件盈利×平均每天售出的件数=每天销售这种衬衣利润,列出方程解答即可.
(2)同样列出方程,若方程有实数根则可以,否则不可以.
【详解】
(1)设每件衬衫应降价x元.
根据题意,得 (40-x)(1+2x)=110
整理,得x2-30x+10=0
解得x1=10,x2=1.
∵“扩大销售量,减少库存”,
∴x1=10应略去,
∴x=1.
答:每件衬衫应降价1元.
(2)不可能.理由如下:
令y=(40-x)(1+2x),
当y=1600时,(40-x)(1+2x)=1600
整理得x2-30x+400=0
∵△=900-4×400<0,
方程无实数根.
∴商场平均每天不可能盈利1600元.
此题主要考查了一元二次方程的应用和根的判别式,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.
16、原分式方程无解.
【解析】
根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.
【详解】
方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3
即:x2+2x﹣x2﹣x+2=3
整理,得x=1
检验:当x=1时,(x﹣1)(x+2)=0,
∴原方程无解.
本题考查解分式方程,解题的关键是明确解放式方程的计算方法.
17、(1)15(2)方案一:甲队作4个月,乙队作9个月;方案二:甲队作2个月,乙队作1个月
【解析】
(1)设完成本项工程的工作总量为1,由题意可知,从而得出x=15. 即单独完成这项工程需要15个月.
(2)根据题目关键信息:该工程总费用不超过141万元、采取甲队做a个月,乙队做b个月(a、b均为整数)分工合作的方式施工可以列出关于a、b方程组,从而得出a、b的取值范围,根据a、b的取值范围及a、b均为整数的关系得出b为3的倍数,则b=9或b=1.从而得出a的取值.确定工程方案.
【详解】
(1)设乙队需要x个月完成,根据题意得:
经检验x=15是原方程的根
答:乙队需要15个月完成;
(2)根据题意得:,解得:a≤4 b≥9
∵a≤1,b≤1且a,b都为正整数,
∴9≤b≤1又a=10﹣b,
∴b为3的倍数,∴b=9或b=1.
当b=9时,a=4;
当b=1时,a=2
∴a=4,b=9或a=2,b=1.
方案一:甲队作4个月,乙队作9个月;
方案二:甲队作2个月,乙队作1个月;
本题主要考查列方程解决工程问题,工程问题是中考常考知识点.根据 a、b的取值范围及a、b均为整数的关系得出b为3的倍数是本题的难点.
18、(1)《孟子》的单价为25元/本,《论语》单价为40元/本;(2)最多购买12本.
【解析】
(1)本题中有两个相等关系:《孟子》的单价=《论语》的单价-15元,用500元购买《孟子》的数量=用800元购买《论语》的数量;据此设未知数列出分式方程,再解方程即可;
(2)设购买《论语》本,据题意列出关于a的不等式,求出不等式的解集后,再取解集中的最大整数即可.
【详解】
解:(1)设《孟子》的单价为元/本,则《论语》单价为元/本,
根据题意,得,解得,
经检验为原方程的根,.
答:《孟子》的单价为25元/本,《论语》单价为40元/本.
(2)设购买《论语》本,则购买《孟子》本.
根据题意,得,
解得,
答:这所学校最多购买12本《论语》.
本题考查了分式方程的应用和一元一次不等式的应用,正确理解题意列出分式方程和一元一次不等式是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、12.2
【解析】
由表格可知,开始油箱中的油为111L,每行驶1小时,油量减少8L,据此可得y与t的关系式.
【详解】
解:由题意可得:y=111-8t,
当y=1时,1=111-8t
解得:t=12.2.
故答案为:12.2.
本题考查函数关系式.注意贮满111L汽油的汽车,最多行驶的时间就是油箱中剩余油量为1时的t的值.
20、1
【解析】
利用平方差公式求解即可求得答案.
【详解】
解:当,时,
.
故答案为:1.
此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用是解此题的关键.
21、
【解析】
利用角平分线的数量关系和外角的性质先得到∠A1与∠A的关系,同样的方法再得到∠A2和∠A1的关系,从而观察出其中的规律,得出结论.
【详解】
平分 ,
.
平分 ,
.
.
同理可得:
;
......
本题考察了三角形内角和外角平分线的综合应用及列代数式表示规律.
22、1
【解析】
连接DC,由垂直平分线的性质可得DC=DA,易得∠ACD=∠A=30°,∠BCD=30°,利用锐角三角函数定义可得CD的长,利用“在直角三角形中,30°角所对的直角边等于斜边的一半.”可得DE的长.
【详解】
解:连接DC,
∵∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,
∴DC=DA,
∴∠ACD=∠A=30°,∠BCD=30°,
,
∵∠BCD=30°,
,
∴DE=1,
故答案为1.
本题主要考查了直角三角形的性质和垂直平分线的性质,做出恰当的辅助线是解答此题的关键.
23、40°.
【解析】
根据平行四边形的对角相等求∠D,由AE⊥CD,利用直角三角形两锐角互余求∠DAE.
【详解】
解:∵四边形ABCD为平行四边形,
∴∠D=∠B=50°,
又∵AE⊥CD,
∴∠DAE=90°-∠D=40°.
故答案为:40°.
本题考查平行四边形的性质,注意掌握平行四边形的两组对角分别相等,直角三角形的两锐角互余.
二、解答题(本大题共3个小题,共30分)
24、(1)点E的坐标为(1,2);(2)点 P的坐标为(-1,6)或(5,-6).
【解析】
(1)把y=x+1与y=-2x+4联立组成方程组,解方程组求得x、y的值,即可求得点E的坐标;(2)先求得点A的坐标为(-1,0)、点D的坐标为(2,0),可得AD=3,根据△ADP的面积为9求得△ADP边AD上的高为6,可得点P的纵坐标为6,再分当点P在y轴的上方时和当点P在y轴的下方时两种情况求点P的坐标即可.
【详解】
(1)由题意得,,
解得,,
∴点E的坐标为(1,2);
(2)∵直线y=x+1与x交于点A,直线y=-2x+4与x交于点D,
∴A(-1,0),D(2,0),
∴AD=3,
∵△ADP的面积为9,
∴△ADP边AD上的高为6,
∴点P的纵坐标为6,
当点P在y轴的上方时,-2x+4=6,
解得x=-1,
∴P(-1,6);
当点P在y轴的下方时,-2x+4=-6,
解得x=5,
∴P(5,-6);
综上,当△ADP的面积为9时,点 P的坐标为(-1,6)或(5,-6).
本题考查了两直线的交点问题,熟知两条直线的交点坐标是这两条直线相对应的一次函数表达式所组成的二元一次方程组的解是解决问题的关键.
25、(1)甲:8.5,乙:8.5;(2)应派甲去参加比赛,理由见解析.
【解析】
(1)根据平均数的公式:平均数=所有数之和再除以数的个数;
(2)根据方差公式计算即可.
【详解】
解:(1)甲、乙两人射击成绩的平均成绩分别为:
甲=,
乙=;
(2)甲=,
乙=,
所以甲同学的射击成绩比较稳定,应派甲去参加比赛.
本题考查平均数、方差的定义:方差它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.平均数反映了一组数据的集中程度,求平均数的方法是所有数之和再除以数的个数;方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法.
26、(1)见解析;(2)见解析.
【解析】
(1)根据角平分线的作图方法作图即可;
(2)由题意易证△ADE≌△CBF推出DE=BF.
【详解】
(1)解:以B为圆心、适当长为半径画弧,交AB、BC于M、N两点,分别以M、N为圆心、大于MN长为半径画弧,两弧相交于点P,过B、P作射线BF交AC于F.
(2)证明如下:∵AD∥BC,∴∠DAC=∠C.
∵BF平分∠ABC,∴∠ABC=2∠FBC,
又∵∠ABC=2∠ADG,∴∠D=∠FBC,
在△ADE与△CBF中,,
∴△ADE≌△CBF(ASA),
∴DE=BF.
本题考查的是全等三角形的判定定理以及基本作图的有关知识,难度一般.
题号
一
二
三
四
五
总分
得分
甲
2
6
7
7
8
乙
2
3
4
8
8
t(小时)
1
1
2
3
y(升)
111
92
84
76
黑龙江省大庆市名校2025届数学九年级第一学期开学复习检测模拟试题【含答案】: 这是一份黑龙江省大庆市名校2025届数学九年级第一学期开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届黑龙江省大庆市林甸四中学数学九年级第一学期开学复习检测模拟试题【含答案】: 这是一份2025届黑龙江省大庆市林甸四中学数学九年级第一学期开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届黑龙江大庆市三站中学九上数学开学联考模拟试题【含答案】: 这是一份2025届黑龙江大庆市三站中学九上数学开学联考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。