河南省南阳市内乡县2024年数学九年级第一学期开学考试试题【含答案】
展开
这是一份河南省南阳市内乡县2024年数学九年级第一学期开学考试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平行四边形ABCD中,数据如图,则∠D的度数为( )
A.20°B.80°C.100°D.120°
2、(4分)若分式的值为零,则的值是( )
A.B.C.D.
3、(4分)八年级某同学6次数学小测验的成绩分别为95分,80分,85分,95分,95分,85分,则该同学这6次成绩的众数和中位数分别是( )
A.95分,95分B.95分,90分C.90分,95分D.95分,85分
4、(4分)在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么此时高为18米的旗杆的影长为( )
A.20米B.30米C.16米D.15米
5、(4分)分式方程-1=的解为( )
A.x=1 B.x=-1 C.无解 D.x=-2
6、(4分)平行四边形的一个内角为50°,它的相邻的一个内角等于( )
A.40°B.50°C.130°D.150°
7、(4分)如图,已知直角坐标系中的点A、B的坐标分别为A(2,4)、B(4,0),且P为AB的中点.若将线段AB向右平移3个单位后,与点P对应的点为Q,则点Q的坐标是( )
A.(3,2)B.(6,2)C.(6,4)D.(3,5)
8、(4分)若化简的结果为,则的取值范围是( )
A.一切实数B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系xOy中,已知正比例函数y= -2x和反比例函数的图象交于A(a,-4),B两点。过原点O的另一条直线l与双曲线交于点P,Q两点(P点在第二象限),若以点A,B,P,Q为顶点的四边形面积为24,则点P的坐标是_______
10、(4分)若,则y _______(填“是”或“不是”)x的函数.
11、(4分)利用因式分解计算:2012-1992=_________;
12、(4分)如图,是等腰直角三角形内一点,是斜边,将绕点按逆时针方向旋转到的位置.如果,那么的长是____.
13、(4分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:
(1)当参加老师的人数为多少时,两家旅行社收费相同?
(2)求出y1、y2关于x的函数关系式?
(3)如果共有50人参加时,选择哪家旅行社合算?
15、(8分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,E,F分别是OA和OC的中点.
(1)求证:DE=BF.
(2)求证:四边形BFDE是平行四边形.
16、(8分)某中学课外兴趣活动小组准备围建一个矩形的苗圃圆.其中一边靠墙,另外三边用长为40m的篱笆围成.已知墙长为18m(如图所示),设这个苗圃园垂直于墙的一边AB为xm
(1)用含有x的式子表示AD,并写出x的取值范围;
(2)若苗圃园的面积为192m2平方米,求AB的长度.
17、(10分)如图,点C,D在线段AB上,△PCD是等边三角形,△ACP∽△PDB,
(1)请你说明CD2=AC•BD;
(2)求∠APB的度数.
18、(10分)某老师计算学生的学期总评成绩时按照如下的标准:平时成绩占20%,期中成绩占30%,期末成绩占50%.小东和小华的成绩如下表所示:
请你通过计算回答:小东和小华的学期总评成绩谁较高?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)比较大小:_______2(填“>”或“<”).
20、(4分)平面直角坐标系中,将直线l:y=2x-1沿y轴向下平移b个单位长度后后得到直线l′,点A(m,n)是直线l′上一点,且2m-n=3,则b =_______.
21、(4分)若m=+5,则mn=___.
22、(4分)如图,在边长为的菱形中,,是边的中点,是对角线上的动点,连接,,则的最小值______.
23、(4分)在一个不透明的盒子中装有n个小球,它们除颜色不同外,其余都相同,其中有4个是白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中,大量重复上述实验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是___.
二、解答题(本大题共3个小题,共30分)
24、(8分)我们可用表示以为自变量的函数,如一次函数,可表示为,且,,定义:若存在实数,使成立,则称为的不动点,例如:,令,得,那么的不动点是1.
(1)已知函数,求的不动点.
(2)函数(是常数)的图象上存在不动点吗?若存在,请求出不动点;若不存在,请说明理由;
(3)已知函数(),当时,若一次函数与二次函数的交点为,即两点的横坐标是函数的不动点,且两点关于直线对称,求的取值范围.
25、(10分)若m,n,p满足m-n=8,mn+p2+16=0,求m+n+p的值?
26、(12分)在如图所示的平面直角坐标系中,直线AB:y=k1x+b1与直线AD:y=k2x+b2相交于点A(1,3),且点B坐标为(0,2),直线AB交x轴负半轴于点C,直线AD交x轴正半轴于点D.
(1)求直线AB的函数解析式;
(2)若△ACD的面积为9,解不等式:k2x+b2>0;
(3)若点M为x轴一动点,当点M在什么位置时,使AM+BM的值最小?求出此时点M的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
依据平行四边形的性质可得5x+4x=180°,解得x=20°,则∠D=∠B=80°.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC.
∴5x+4x=180°,解得x=20°.
∴∠D=∠B=4×20°=80°.
故选B.
本题主要考查了平行四边形的性质:邻角互补.同时考查了方程思想.
2、B
【解析】
根据分式值为0的条件,分式为0则分子为0,分母不为0,由分子为0即可得.
【详解】
∵=0,
∴x-1=0,
即x=1,
故选:B.
本题考查了分式值为0的条件,掌握分式值为0的条件是解题的关键.
3、B
【解析】
根据题目中的数据,可以得到这组数据的众数和中位数,本题得以解决.
【详解】
解:将这6位同学的成绩从小到大排列为80、85、85、95、95、95,
由于95分出现的次数最多,有3次,即众数为95分,
第3、4个数的平均数为:=90,即中位数为90分,
故选:B.
本题考查众数、中位数,解答本题的关键是明确众数、中位数的定义,会求一组数据的众数、中位数.
4、B
【解析】
设此时高为18米的旗杆的影长为xm,利用“在同一时刻物高与影长的比相等”列出比例式,进而即可求解.
【详解】
设此时高为18米的旗杆的影长为xm,
根据题意得:=,
解得:x=30,
∴此时高为18米的旗杆的影长为30m.
故选:B.
本题考查了相似三角形的应用,掌握相似三角形的性质和“在同一时刻物高与影长的比相等”的原理,是解题的关键.
5、C
【解析】
解:去分母得:x(x+2)﹣(x﹣1)(x+2)=3,整理得:2x﹣x+2=3,解得:x=1,检验:把x=1代入(x﹣1)(x+2)=0,所以分式方程无解.故选C.
点睛:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
6、C
【解析】
利用平行四边形的邻角互补进而得出答案.
【详解】
解:∵平行四边形的一个内角为50°,邻角互补,
∴它的相邻的一个内角等于180°-50°=130°.
故选:C.
此题主要考查了平行四边形的性质,熟记平行四边形的邻角互补关系是解题关键.
7、B
【解析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
【详解】
根据中点坐标的求法可知点坐标为,因为左右平移点的纵坐标不变,由题意向右平移3个单位,则各点的横坐标加3,所以点的坐标是.
故选:.
本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.
8、B
【解析】
根据完全平方公式先把多项式化简为|1−x|−|x−4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.
【详解】
原式可化简为,
当,时,可得无解,不符合题意;
当,时,可得时,原式;
当,时,可得时,原式;
当,时,可得时,原式.
据以上分析可得当时,多项式等于.
故选B.
本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论
二、填空题(本大题共5个小题,每小题4分,共20分)
9、P(﹣4,2)或P(﹣1,8).
【解析】
根据题意先求出点A(2,﹣4),利用原点对称求出B(﹣2,4),再把A代入代入反比例函数得出解析式,利用原点对称得出四边形AQBP是平行四边形,S△POB=S平行四边形AQBP×=×24=1,设点P的横坐标为m(m<0且m≠﹣2),得到P的坐标,根据双曲线的性质得到S△POM=S△BON=4,接着再分情况讨论:若m<﹣2时,可得P的坐标为(﹣4,2);若﹣2<m<0时,可得P的坐标为(﹣1,8).
【详解】
解:∵点A在正比例函数y=﹣2x上,
∴把y=﹣4代入正比例函数y=﹣2x,
解得x=2,∴点A(2,﹣4),
∵点A与B关于原点对称,
∴B点坐标为(﹣2,4),
把点A(2,﹣4)代入反比例函数 ,得k=﹣8,
∴反比例函数为y=﹣,
∵反比例函数图象是关于原点O的中心对称图形,
∴OP=OQ,OA=OB,
∴四边形AQBP是平行四边形,
∴S△POB=S平行四边形AQBP×=×24=1,
设点P的横坐标为m(m<0且m≠﹣2),
得P(m,﹣),
过点P、B分别做x轴的垂线,垂足为M、N,
∵点P、B在双曲线上,
∴S△POM=S△BON=4,
若m<﹣2,如图1,
∵S△POM+S梯形PMNB=S△POB+S△POM,
∴S梯形PMNB=S△POB=1.
∴(4﹣)•(﹣2﹣m)=1.
∴m1=﹣4,m2=1(舍去),
∴P(﹣4,2);
若﹣2<m<0,如图2,
∵S△POM+S梯形BNMP=S△BOP+S△BON,
∴S梯形BNMP=S△POB=1.
∴(4﹣)•(m+2)=1,
解得m1=﹣1,m2=4(舍去),
∴P(﹣1,8).
∴点P的坐标是P(﹣4,2)或P(﹣1,8),
故答案为P(﹣4,2)或P(﹣1,8).
此题考查一次函数和反比例函数的综合,解题关键在于做出辅助线,运用分类讨论的思想解决问题.
10、不是
【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应的关系,据此即可判断.
【详解】
对于x的值,y的对应值不唯一,故不是函数,
故答案为:不是.
本题是对函数定义的考查,熟练掌握函数的定义是解决本题的关键.
11、800
【解析】
分析:先利用平方差公式分解因式,然后计算即可求解.
详解:2012-1992=(201+199)(201-199)=800.
故答案为800.
点睛:本题考查了因式分解在进行有理数的乘法中的运用,涉及的是平方差公式的运用,使运算简便.
12、
【解析】
证明△ADD′是等腰直角三角形即可解决问题.
【详解】
解:由旋转可知:△ABD≌△ACD′,
∴∠BAD=∠CAD′,AD=AD′=2,
∴∠BAC=∠DAD′=90°,即△ADD′是等腰直角三角形,
∴DD′=,
故答案为:.
本题考查旋转的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
13、24
【解析】∵小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,
∴口袋中白色球的个数很可能是(1-15%-45%)×60=24个.
三、解答题(本大题共5个小题,共48分)
14、(1)当参加老师的人数为30时,两家旅行社收费相同;(2)y2=40x+600;(3)如果共有50人参加时,选择乙家旅行社合算,理由见解析
【解析】
(1)根据函数图象和图象中的数据可以得到当参加老师的人数为多少时,两家旅行社收费相同;
(2)根据函数图象中的数据可以求得y1、y2关于x的函数关系式;
(3)根据函数图象可以得到如果共有50人参加时,选择哪家旅行社合算.
【详解】
解:(1)由图象可得,
当参加老师的人数为30时,两家旅行社收费相同;
(2)设y1关于x的函数关系式是y1=ax,
30a=1800,得a=60,
即y1关于x的函数关系式是y1=60x;
设y2关于x的函数关系式是y2=kx+b,
,得,
即y2关于x的函数关系式是y2=40x+600;
(3)由图象可得,
当x>50时,乙旅行社比较合算,
∴如果共有50人参加时,选择乙家旅行社合算.
本题考查一次函数的应用、方案选择问题,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
15、(1)见解析;(2)见解析.
【解析】
(1)根据平行四边形的判定和性质即可得到结论;
(2)根据平行四边形的判定和性质即可得到结论.
【详解】
(1)∵四边形ABCD是平行四边形,
∴BO=OD,AO=OC,
又∵E,F分别为AO,OC的中点,
∴EO=OF,
∴四边形BFDE是平行四边形,
∴DE=BF;
(2)∵四边形ABCD是平行四边形,
∴BO=OD,AO=OC,
又∵E,F分别为AO,OC的中点,
∴EO=OF,
∴四边形BFDE是平行四边形.
本题考查了平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质,属于中考常考题型.
16、(1)AD=40-2x.11≤x<1.(2)若苗圃园的面积为192平方米,则AB的长度为12米.
【解析】
(1)由矩形的周长公式求得AD的长度;由AD长度意义求得x的取值范围;
(2)根据矩形的面积公式,即可得出关于x的一元二次方程,解之即可得出x的值,再由(1)中x的取值范围即可确定x的值.
【详解】
(1)AD=40-2x,
∵0<40-2x≤18,
∴x的取值范围为:11≤x<1;
(2)根据题意得:x(40-2x)=192,
整理,得x2-1x+96=0,
解得:x1=8,x2=12,
∵11≤x<1,
当x=8时,40-2x=40-16=24>18,
∴不合题意,舍去;
∴x=12,即AB的长度为12,
答:若苗圃园的面积为192平方米,则AB的长度为12米.
本题考查了一元二次方程的应用、矩形的面积以及一次函数的应用,解题的关键是:(1)根据篱笆长度得出用含有x的式子表示BC的式子;(2)利用矩形的面积公式,找出关于x的一元二次方程.
17、(1)见解析;(2)∠APB=120°.
【解析】
(1)由△ACP∽△PDB,根据相似三角形的对应边成比例,可得AC:PD=PC:BD,又由△PCD是等边三角形,即可证得CD2=AC•BD;
(2)由△ACP∽△PDB,根据相似三角形对应角相等,可得∠A=∠BPD,又由△PCD是等边三角形,即可求得∠APB的度数.
【详解】
(1)证明:∵△ACP∽△PDB,
∴AC:PD=PC:BD,
∴PD•PC=AC•BD,
∵△PCD是等边三角形,
∴PC=CD=PD,
∴CD2=AC•BD;
(2)解:∵△ACP∽△PDB,
∴∠A=∠BPD,
∵△PCD是等边三角形,
∴∠PCD=∠CPD=60°,
∴∠PCD=∠A+∠APC=60°,
∴∠APC+∠BPD=60°,
∴∠APB=∠APC+∠CPD+∠BPD=120°.
此题考查了相似三角形的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想的应用.
18、小东的学期总评成绩高于小华
【解析】
根据加权平均数公式,分别求出小东和小华的学期总评分,比较得到结果.
【详解】
解:小东总评成绩为(分);
小华总评成绩为(分).
小东的学期总评成绩高于小华.
本题考查加权平均数,解题的关键是熟练掌握加权平均数.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、<
【解析】
试题解析:
故答案为:
20、2
【解析】
先写出直线l′的解析式为y=2x-1-b,代入点A的坐标得到n=2m-1-b,因为2m-n=3,即可解答出b的值.
【详解】
∵直线l′为y=2x-1沿y轴向下平移b个单位长度,
∴直线l′:y=2x-1-b,
∵点A(m,n)是直线l′上一点,
∴n=2m-1-b
又∵且2m-n=3,解得b=2.
故答案为:2.
此题考查一次函数,解题关键在于一次函数图象的平移.
21、1.
【解析】
直接利用二次根式有意义的条件得出m,n的值进而得出答案.
【详解】
∵m=+5,
∴n=2,则m=5,
故mn=1.
故答案为:1.
此题主要考查了二次根式有意义的条件,正确得出m,n的值是解题关键.
22、
【解析】
根据在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点,据此可以作对称点,找到最小值.
【详解】
解:连接AE.
∵四边形ABCD为菱形,
∴点C、A关于BD对称,
∴PC=AP,
∴PC+EP=AP+PE,
∴当P在AE与BD的交点时,
AP+PE最小,
∵E是BC边的中点,
∴BE=1,
∵AB=2,B=60°,
∴AE⊥BC,
此时AE最小,为,
最小值为.
本题考查了线段之和的最小值,熟练运用菱形的性质是解题的关键.
23、10
【解析】
利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
【详解】
∵通过大量重复试验后发现,摸到红球的频率稳定于0.4,
∴=0.4,
解得:n=10.
故答案为:10.
此题考查利用频率估计概率,掌握运算法则是解题关键
二、解答题(本大题共3个小题,共30分)
24、(1的不动点为0和2;(2)①时,有唯一的不动点②时,有无数个不动点③时,没有不动点;(3)的取值范围是
【解析】
(1)根据不动点的性质即可列方程求解;
(2)令,得:,根据m,n的取值进行讨论即可求解;
(3)令,则,根据一元二次方程根与系数求出A,B的中点C的坐标,再根据点在直线上,得到,得到b关于a的二次函数,再根据二次函数的性质即可求解.
【详解】
解:(1)令,则,,.
所以,的不动点为0和2.
(2)令,得:.
①若,即时,有唯一的不动点;
②若,,即时,有无数个不动点;
③若,即时,没有不动点0.
(3)令,则.
设,,则,.
的中点坐标为
,.
所以,
点在直线上,
所以,.
.
当时,.
此时,恒大于0
所以,的取值范围是:.
此题主要考查二次函数的应用,解题的关键是根据题意理解不动点的定义与性质.
25、m+n+p=0.
【解析】
试题分析:把m,n,p看成是未知数,本题已知两个方程求三个未知数,因此可以采用主元法,将其中一个未知数看成常数,另外两个当作未知数进行解答,本题由m-n=8,可得:
m=n+8,把m=n+8代入mn+p2+16=0,得n2+8n+16+p2=0,即(n+4)2+p2=0,根据非负数的非负性质可求出n=-4,p=0,所以m=4,因此m+n+p=4+(-4)+0=0.
因为m-n=8,所以m=n+8.
将m=n+8代入mn+p2+16=0中,得n(n+8)+p2+16=0,所以n2+8n+16+p2=0,即(n+4)2+p2=0.
又因为(n+4)2≥0,p2≥0,
所以,解得,所以m=n+8=4,
所以m+n+p=4+(-4)+0=0.
26、(1)y=x+2;(2)x<4;(3)(,0).
【解析】
(1)将点A、B两点代入,即可求解析式;
(2)令y=0,求出C点坐标,由三角形ACD的面积是9,求出D点坐标,结合图象即可求解;
(3)作点B关于x轴的对称点E(0,-2),连接AE交x轴于点M,设直线AE解析式为y=kx+b,确定AE的解析式即可求M点坐标.
【详解】
解:(1)把A、B两点代入,得,
解得,
故直线AB的函数解析式为y=x+2;
(2)令y=x+2=0得x=-2,
∴C(-2,0).
又∵△ACD的面积为9,
∴3×CD=9,
∴CD=6,
∴D点坐标(4,0),
由图象得不等式的解集为:x<4;
(3)作点B关于x轴的对称点E(0,-2),连接AE交x轴于点M,
设直线AE解析式为y=kx+b,
∴,
∴,
∴y=5x-2,
当y=0时,x=,故点M的坐标为(,0).
本题考查一次函数的图象及性质待定系数法求函数解析式,轴对称的应用;熟练掌握待定系数法求函数解析式的方法,利用轴对称求最短距离是解题的关键.
题号
一
二
三
四
五
总分
得分
学生
平时成绩
期中成绩
期末成绩
小东
70
80
90
小华
90
70
80
相关试卷
这是一份河南省南阳市新野县2025届数学九年级第一学期开学考试试题【含答案】,共21页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份2024年河南省南阳市内乡县九年级数学中考一模试题,文件包含2024年河南省南阳市内乡县九年级数学中考一模试题原卷版docx、2024年河南省南阳市内乡县九年级数学中考一模试题解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
这是一份2023-2024学年河南省南阳市内乡县灌涨中学九年级(上)开学数学试卷(含解析),共12页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。