河南省南阳市新野县2025届数学九年级第一学期开学考试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为( )
A.B.C.D.
2、(4分)如图,有一高度为8m的灯塔AB,在灯光下,身高为1.6m的小亮从距离灯塔底端4.8m的点C处,沿BC方向前进3.2m到达点D处,那么他的影长( )
A.变长了0.8mB.变长了1.2mC.变短了0.8mD.变短了1.2m
3、(4分)使用同一种规格的下列地砖,不能进行平面镶嵌的是( )
A.正三角形地砖 B.正四边形地砖 C.正五边形地砖 D.正六边形地砖
4、(4分)已知为矩形的对角线,则图中与一定不相等的是( )
A.B.C.D.
5、(4分)下列函数(1)(2)(3)(4)(5)中,一次函数有( )个.
A.1B.2C.3D.4
6、(4分)已知正比例函数()的函数值y随x的增大而减小,则一次函数的图像经过的象限为 ( )
A.二、三、四 B.一、二、四 C.一、三、四 D.一、二、三
7、(4分)如图,、两点在反比例函数的图象上,、两点在反比例函数的图象上,轴于点,轴于点,,,,则的值是( )
A.8B.6C.4D.10
8、(4分)如果aA.a+2二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为 .
10、(4分)若点和点都在一次函数的图象上,则___选择“>”、“<”、“=”填空).
11、(4分)如图,小明作出了边长为2的第1个正△A1B1C1 , 算出了正△A1B1C1的面积. 然后分别取△A1B1C1的三边中点A2、B2、C2 , 作出了第2个正△A2B2C2 , 算出了正△A2B2C2的面积. 用同样的方法,作出了第3个正△A3B3C3 , 算出了正△A3B3C3的面积……,由此可得,第2个正△A2B2C2的面积是_______,第n个正△AnBnCn的面积是______
12、(4分)因式分解:a2﹣6a+9=_____.
13、(4分)已知a+b=5,ab=-6,则代数式ab2+a2b的值是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知y与x+1成正比例,当x=1时,y=3,求y与x的函数关系式.
15、(8分)已知:如图所示,菱形中,于点,且为的中点,已知,求菱形的周长和面积.
16、(8分)解一元二次方程:.
17、(10分)已知A、B两地相距4800米,甲从A地出发步行到B地,20分钟后乙从B地出发骑自行车到A地,设甲步行的时间为x分钟,甲、乙两人离A地的距离分别为米、米,、与x的函数关系图象如图所示,根据图象解答下列问题:
(1)直接写出y、y与x的函数关系式,并写出自变量x的取值范围;
(2)求甲出发后多少分钟两人相遇,相遇时乙离A地多少米?
18、(10分)星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:
(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?
(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;
(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图所示的围棋盘放在平面直角坐标系内,黑棋A的坐标为(1,2),那么白棋B的坐标是_____.
20、(4分)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为 .
21、(4分)直线y=kx+b与直线y=-3x+4平行,且经过点(1,2),则k=______,b=______.
22、(4分)若式子在实数范围内有意义,则x的取值范围是_____.
23、(4分)农科院对甲、乙两种甜玉米各10块试验田进行试验后,得到甲、乙两个品种每公顷的平均产量相同,而甲、乙两个品种产量的方差分别为,,则产量较为稳定的品种是_____________(填“甲”或“乙”).
二、解答题(本大题共3个小题,共30分)
24、(8分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年的随机抽取了部分学生的鞋号,绘制了统计图A和图B,请根据相关信息,解答下列问题:
(1)本次随机抽样的学生数是多少?A中值是多少?
(2)本次调查获取的样本数据的众数和中位数各是多少?
(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?
25、(10分)计算:
26、(12分)阅读下列材料:
小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积.
小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积他把这种解决问题的方法称为构图法.
请回答:
(1)①图1中△ABC的面积为________;
②图1中过O点画一条线段MN,使MN=2AB,且M、N在格点上.
(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).利用构图法在图2中画出三边长分别为、2、的格点△DEF.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
首先确定在阴影的面积在整个面积中占的比例,根据这个比例即可求出蚂蚁停在阴影部分的概率。
【详解】
∵正方形被等分成9份,其中阴影方格占4份,
∴当蚂蚁停下时,停在地板中阴影部分的概率为,
故选:C
此题考查概率公式,掌握运算法则是解题关键
2、A
【解析】
根据由CH∥AB∥DG可得△HCE∽△ABE、△GDF∽△ABF,所以,将数值代入求解可得CE、DF的值,可得答案。
【详解】
解:如图
由CH∥AB∥DG可得△HCE∽△ABE、△GDF∽△ABF,
∴,即
解得:CE=1.2,DF=2
∴DF-CE=2-1.2=0.8
故选:A
本题考查了相似三角形的应用:利用影长测量物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.
3、C
【解析】试题解析:A、正三角形的每个内角是60°,能整除360°,能密铺,故A不符合题意;
B、正四边形每个内角是90°,能整除360°,能密铺,故B不符合题意;
C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺,故C符合题意;
D、正六边形每个内角是120°,能整除360°,能密铺,故D不符合题意.
故选C.
4、D
【解析】
解:A选项中,根据对顶角相等,得与一定相等;
B、C项中无法确定与是否相等;
D选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1.
故选:D
5、C
【解析】
根据一次函数的定义进行分析,即可得到答案.
【详解】
解:根据题意,一次函数有:,,,共3个;
故选择:C.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
6、A
【解析】
试题分析:∵正比例函数()的函数值y随x的增大而减小,∴k<0,∴一次函数的图像经过二、三、四象限.故选A.
考点:一次函数的性质.
7、A
【解析】
由反比例函数的性质可知S△AOE=S△BOF=k1,S△COE=S△DOF=﹣k2,结合S△AOC=S△AOE+S△COE和S△BOD=S△DOF+S△BOF可求得k1﹣k2的值.
【详解】
解:连接OA、OC、OD、OB,如图:
由反比例函数的性质可知S△AOE=S△BOF=|k1|=k1,S△COE=S△DOF=|k2|=﹣k2,
∵S△AOC=S△AOE+S△COE,
∴AC•OE=×4OE=2OE=(k1﹣k2)…①,
∵S△BOD=S△DOF+S△BOF,
∴BD•OF=×(EF﹣OE)=×2(6﹣OE)=6﹣OE=(k1﹣k2)…②,
由①②两式解得OE=2,
则k1﹣k2=1.
故选:A.
本题考查反比例函数图象上的点的坐标特征,解题的关键是利用参数,构建方程组解决问题,属于中考常考题型.
8、C
【解析】
根据不等式的性质,逐项判断即可.
【详解】
解:A.,,选项结论正确,不符合题意;
B.,,选项结论正确,不符合题意;
C.,,选项结论错误,符合题意;
D.,,选项结论正确,不符合题意.
故选:C.
此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE的最小值,进而可得出结论.
【详解】
连接BD,DE,
∵四边形ABCD是正方形,
∴点B与点D关于直线AC对称,
∴DE的长即为BQ+QE的最小值,
∵DE=BQ+QE=,
∴△BEQ周长的最小值=DE+BE=5+1=1.
故答案为1.
考点:本题考查的是轴对称-最短路线问题,熟知轴对称的性质是解答此题的关键.
10、>
【解析】
分别把点和点代入一次函数求出y1、y2的值,再比较出其大小即可.
【详解】
解: 和点都在一次函数的图象上,
y1=-1+2=1;
y2=-2+2=0
1>0
y1>y2.
故答案为:>
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
11、
【解析】
根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是.
【详解】
正△A1B1C1的面积是×22==,
∵△A2B2C2与△A1B1C1相似,并且相似比是1:2,
∴面积的比是1:4,
则正△A2B2C2的面积是× ==;
∵正△A3B3C3与正△A2B2C2的面积的比也是1:4,
∴面积是×==;
依此类推△AnBnCn与△An﹣1Bn﹣1Cn﹣1的面积的比是1:4,
第n个三角形的面积是.
故答案是: , .
考查了相似三角形的判定与性质,以及等边三角形的性质,找出题中的规律是解题的关键.
12、
【解析】
试题分析:直接运用完全平方公式分解即可.a2-6a+9=(a-3)2.
考点:因式分解.
13、-1.
【解析】
先利用提公因式法因式分解,然后利用整体代入法求值即可.
【详解】
解:∵ab2+a2b=ab(a+b),
而a+b=5,ab=-6,
∴ab2+a2b=-6×5=-1.
故答案为:-1.
此题考查的是因式分解,掌握利用提公因式法因式分解是解决此题的关键.
三、解答题(本大题共5个小题,共48分)
14、y=x+
【解析】
试题分析:根据正比例函数的定义设y=k(x+1)(k≠0),然后把x、y的值代入求出k的值,再整理即可得解.
解:由题意,设y=k(x+1),把x=1,y=3代入,得2k=3,
∴k=
∴y与x的函数关系式为.
考点:待定系数法求一次函数解析式.
15、周长为16;面积为8
【解析】
直接利用线段垂直平分线的性质结合菱形的性质得出△ABD是等边三角形,直接利用菱形的性质结合勾股定理得出AC的长,利用菱形面积求法得出答案.
【详解】
∵DE⊥AB于E,且E为AB的中点,
∴AD=BD,
∵四边形ABCD是菱形,
∴AD=BA,
∴AB=AD=BD,
∴△ABD是等边三角形,
∴∠DAB=60°;
∵BD=4,
∴DO=2,AD=4,
∴AO==2 ,
∴AC=4;
∴AB== =4,
∴菱形ABCD的周长为4×4=16;
菱形ABCD的面积为:BD•AC=×4×4=8
此题主要考查了菱形的性质以及等边三角形的判定方法,正确应用菱形的性质是解题关键.
16、,
【解析】
【分析】用公式法求一元二次方程的解.
【详解】
解:,,.
>1.
∴.
∴原方程的解为,
【点睛】本题考核知识点:解一元二次方程.解题关键点:熟记一元二次方程的求根公式.
17、(1)y1=80x(0≤x≤60),y2=-120x+7200(20≤x≤60);(2)甲出发36分钟后两人相遇,相遇时乙离A地2880米.
【解析】
(1)根据题意利用函数图像信息进行分析计算即可;
(2)由题意可知两人相遇时,甲、乙两人离A地的距离相等,以此建立方程求解,进而得出答案.
【详解】
解:(1)由题意设甲步行的时间为x分钟,甲、乙两人离A地的距离分别为米、米,
甲离A地的距离为y1=80x(0≤x≤60)
乙离A地的距离为y2=-120x+7200(20≤x≤60).
(2)由题意可知:
两人相遇时,甲、乙两人离A地的距离相等,即y1=y2,
∴80x=-120x+7200,解得x=36(分钟).
当x=36时,y=80×36=2880(米).
答:甲出发36分钟后两人相遇,相遇时乙离A地2880米.
本题考查一次函数图象和一元一次方程的实际应用,读懂题意和一次函数图象信息是解题的关键.
18、(1)1400元;(2)有三种方案:①防购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲1台,则购买电压锅1台.理由见解析;(3)购进电饭煲、电压锅各1台.
【解析】
(1)设橱具店购进电饭煲x台,电压锅y台,根据图表中的数据列出关于x、y的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;
(2)设购买电饭煲a台,则购买电压锅(50-a)台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的”列出不等式组;
(3)结合(2)中的数据进行计算.
【详解】
解:(1)设橱具店购进电饭煲x台,电压锅y台,依题意得
,
解得 ,
所以,20×(10-200)+10×(200-160)=1400(元).
答:橱具店在该买卖中赚了1400元;
(2)设购买电饭煲a台,则购买电压锅(50-a)台,依题意得
,
解得 22≤a≤1.
又∵a为正整数,
∴a可取23,24,1.
故有三种方案:①防购买电饭煲23台,则购买电压锅27台;
②购买电饭煲24台,则购买电压锅26台;
③购买电饭煲1台,则购买电压锅1台.
(3)设橱具店赚钱数额为W元,
当a=23时,W=23×(10-200)+27×(200-160)=2230;
当a=24时,W=24×(10-200)+26×(200-160)=2240;
当a=1时,W=1×(10-200)+1×(200-160)=210;
综上所述,当a=1时,W最大,此时购进电饭煲、电压锅各1台.
本题考查一元一次不等式组和二元一次方程组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(﹣1,﹣2) .
【解析】
1、本题主要考查的是方格纸中已知一点后直角坐标系的建立:先确定单位长度,再根据已知点的坐标确立原点,然后分别确定x轴和y轴.
2、本题中只要确立了直角坐标系,点B的坐标就可以很快求出.
【详解】
由题意及点A的坐标可确定如图所示的直角坐标系,
则B点和A点关于原点对称,所以点B的坐标是(-1,-2).
本题考查了建立直角坐标系,牢牢掌握该法是解答本题的关键.
20、1或1或1
【解析】
本题根据题意分三种情况进行分类求解,结合三角函数,等边三角形的性质即可解题.
【详解】
试题分析:当∠APB=90°时(如图1),
∵AO=BO,
∴PO=BO,
∵∠AOC=60°,
∴∠BOP=60°,
∴△BOP为等边三角形,
∵AB=BC=4,
∴;
当∠ABP=90°时(如图1),
∵∠AOC=∠BOP=60°,
∴∠BPO=30°,
∴,
在直角三角形ABP中,
,
如图3,∵AO=BO,∠APB=90°,
∴PO=AO,
∵∠AOC=60°,
∴△AOP为等边三角形,
∴AP=AO=1,
故答案为或或1.
考点:勾股定理.
21、-3, 1
【解析】
根据两直线平行,得到k=-3,然后把(1,2)代入y=-3x+b中,可计算出b的值.
【详解】
∵直线y=kx+b与直线y=-3x+4平行,
∴k=-3,
∵直线y=-3x+b过点(1,2),
∴1×(-3)+b=2,
∴b=1.
故答案为:-3;1.
本题主要考查两平行直线的函数解析式的比例系数关系,掌握若两条直线是平行的关系,那么它们的函数解析式的自变量系数相同,是解题的关键.
22、x≤1.
【解析】
先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
【详解】
∵式子在实数范围内有意义,
∴1﹣x≥0,
解得x≤1.
故答案为x≤1.
本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.
23、乙
【解析】因为S甲2≈0.01>S乙2≈0.002,方差小的为乙,所以本题中比较稳定的是乙.
二、解答题(本大题共3个小题,共30分)
24、(1)40;15(2)众数为35,中位数为36;(3)60双
【解析】
(1)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;
(2)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;
(3)根据题意列出算式,计算即可得到结果.
【详解】
(1)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图A中m的值为100−30−25−20−10=15;
故本次随机抽样的学生数是40名,A中值是15;
(2)∵在这组样本数据中,35出现了12次,出现次数最多,
∴这组样本数据的众数为35;
∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,
∴中位数为=36;
答:本次调查获取的样本数据的众数为35,中位数为36;
(3)∵在40名学生中,鞋号为35的学生人数比例为30%,
∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,
则计划购买200双运动鞋,有200×30%=60双为35号.
答:建议购买35号运动鞋60双.
此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
25、1-
【解析】
根据实数的性质进行化简即可求解.
【详解】
解:原式= +2- -1-
=1-
此题主要考查实数的运算,解题的关键是熟知实数的性质.
26、(1)① ,②见解析; (2)见解析.
【解析】
分析:
(1)①如图3,由S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF结合已知条件即可求得△ABC的面积了;②如图4,对照图形过点O作OM∥AB,且使OM=AB,作ON∥AB,且使ON=AB,则根据过直线为一点有且只有一条直线平行于已知直线可知点O、M、N在同一直线上,由此所得线段MN=2AB;
(2)如图5,按照题中构图法结合勾股定理画出△DEF即可.
详解:
(1)① 如图3,S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF=;
②如图所示,线段MN即为所求:
(2)如图5所示,△DEF即为所求.
点睛:(1)“构造如图3所示的正方形DECF,由此得到,S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF”是解答第1小题的关键;(2“由勾股定理在6×6网格中找到使DE=,EF=,DF=的点D、E、F的位置”是解答第2小题的关键.
题号
一
二
三
四
五
总分
得分
进价(元/台)
售价(元/台)
电饭煲
200
250
电压锅
160
200
河南省南阳市内乡县2024年数学九年级第一学期开学考试试题【含答案】: 这是一份河南省南阳市内乡县2024年数学九年级第一学期开学考试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省新野县数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年河南省新野县数学九年级第一学期开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省南阳市新野县2023-2024学年数学九年级第一学期期末调研模拟试题含答案: 这是一份河南省南阳市新野县2023-2024学年数学九年级第一学期期末调研模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。