河南省南阳内乡县联考2025届数学九上开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列说法错误的是( )
A.一组对边平行且相等的四边形是平行四边形
B.对角线互相垂直的四边形是菱形
C.对角线相等的菱形是正方形
D.对角线相等的平行四边形是矩形
2、(4分)在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD可以进行如下操作:①把△ABF翻折,点B落在C边上的点E处,折痕为AF,点F在BC边上;②把△ADH翻折,点D落在AE边上的点G处,折痕为AH,点H在CD边上,若AD=6,CD=10,则=( )
A.B.C.D.
3、(4分)如图,四边形中,,,,,则四边形的面积是( ).
A.B.C.D.
4、(4分)已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是( )
A.(2,1)B.(2,3)C.(2,2)D.(1,2)
5、(4分)《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x尺,则可列方程为( )
A.x2–3=(10–x)2B.x2–32=(10–x)2C.x2+3=(10–x)2D.x2+32=(10–x)2
6、(4分)实数、在数轴上对应的位置如图,化简等于( )
A.B.
C.D.
7、(4分)下列二次根式中,不是最简二次根式的是( )
A.B.C.D.
8、(4分)关于一次函数,下列结论正确的是( )
A.图象过点B.图象与轴的交点是
C.随的增大而增大D.函数图象不经过第三象限
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)化简:__________.
10、(4分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去记正方形ABCD的边为,按上述方法所作的正方形的边长依次为、、、,根据以上规律写出的表达式______.
11、(4分)在函数的图象上有两个点,,则的大小关系是___________.
12、(4分)一盒中只有黑、白两色的棋子(这些棋除颜色外无其他差别),设黑棋有x枚,白棋有y枚.如果从盒中随机取出一枚为黑棋的概率是,那么y=___.(请用含x的式子表示y)
13、(4分)观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1,根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)=______(其中n为正整数).
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:|﹣3|﹣(+1)0+﹣
15、(8分)先化简,再求值:÷(x﹣),其中x=+1.
16、(8分)某校数学兴趣小组根据学习函数的经验,对函数y=|x|+1的图象和性质进行了探究,探究过程如下:(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:
(1)其中m= .
(2)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(3)当2<y≤3时,x的取值范围为 .
17、(10分)如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后,分别位于点Q、R处,且相距30海里,如果知道“远航”号沿北偏东方向航行,请求出“海天”号的航行方向?
18、(10分)某市教委为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,启动了“学生阳光体育运动”,其中有一项是短跑运动,短跑运动可以锻炼人的灵活性,增强人的爆发力,因此张明和李亮在课外活动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:
成绩统计分析表
(1)张明第2次的成绩为__________秒;
(2)请补充完整上面的成绩统计分析表;
(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁? 请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在直角坐标系中,正方形A1B1C1O、 A2B2C2C1、A3B3C3C2、…、AnBnCnCn-1的顶点A1、A2、A3、…、An均在直线y=kx+b上,顶点C1、C2、C3、…、Cn在x轴上,若点B1的坐标为(1,1),点B2的坐标为(3,2),那么点A4的坐标为 ,点An的坐标为 .
20、(4分)在同一平面直角坐标系中,直线与直线的交点不可能在第_______象限 .
21、(4分)如图,在矩形内放入四个小正方形和两个小长方形后成中心对称图形,其中顶点,分别在边,上,小长方形的长与宽的比值为,则的值为_____.
22、(4分)2018年3月全国两会政府工作报告进一步强调“房子是用来住的,不是用来炒的”定位,继续实行差别化调控。这一年被称为史上房地产调控政策最密集、最严厉的年份。因此,房地产开发公司为了缓解年终资金周转和财务报表的压力,通常在年底大量促销。重庆某房地产开发公司一方面在“高层、洋房、别墅”三种业态的地产产品中作特价活动;另一方面,公司制定了销售刺激政策,对卖出特价的员工进行个人奖励:每卖出一套高层特价房奖励1万元,每卖出一套洋房特价房奖励2万元,每卖出一套别墅特价房奖励4万元.公司将销售人员分成三个小组,经统计,第一组平均每人售出6套高层特价房、4套洋房特价房、3套别墅特价房;第二组平均每人售出2套高层特价房、2套洋房特价房、1套别墅特价房;第三组平均每人售出8套高层特价房、5套洋房特价房。这三组销售人员在此次活动中共获得奖励466万元,其中通过销售洋房特价房所获得的奖励为216万元,且第三组销售人员的人数不超过20人。则第三组销售人员的人数比第一组销售人员的人数多___人.
23、(4分)函数y=﹣6x+5的图象是由直线y=﹣6x向_____平移_____个单位长度得到的.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,AD是△ABC的边BC上的高,∠B=60°,∠C=45°,AC=6.求:
(1)AD的长;
(2)△ABC的面积.
25、(10分)解方程
(1)
(2)
(3)
26、(12分)如图,利用一面长18米的墙,用篱笆围成一个矩形场地ABCD,设AD长为x米,AB长为y米,矩形的面积为S平方米.
(1)若篱笆的长为32米,求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)在(1)的条件下,求S与x的函数关系式,并求出使矩形场地的面积为120平方米的围法.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据正方形,平行四边形,矩形,菱形的判定定理判断即可.
【详解】
解:A、一组对边平行且相等的四边形是平行四边形,故正确;
B、对角线互相垂直且平分的四边形是菱形,故错误;
C、对角线相等的菱形是正方形,故正确;
D、对角线相等的平行四边形是矩形,故正确;
故选:B.
本题考查了正方形,平行四边形,矩形,菱形的判定定理,熟练掌握判定定理是解题的关键.
2、A
【解析】
利用翻折不变性可得AE=AB=10,推出DE=8,EC=2,设BF=EF=x,在Rt△EFC中,x2=22+(6-x)2,可得x=,设DH=GH=y,在Rt△EGH中,y2+42=(8-y)2,可得y=3,由此即可解决问题.
【详解】
∵四边形ABCD是矩形,
∴∠C=∠D=90°,AB=CD=10,AD=BC=6,
由翻折不变性可知:AB=AE=10,AD=AG=6,BF=EF,DH=HG,
∴EG=4,
在Rt△ADER中,DE= =8,
∴EC=10﹣8=2,
设BF=EF=x,在Rt△EFC中有:x2=22+(6﹣x)2,
∴x=,
设DH=GH=y,在Rt△EGH中,y2+42=(8﹣y)2,
∴y=3,
∴EH=5,
∴,
故选A.
本题考查矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.
3、A
【解析】
如下图,分别过、作的垂线交于、,
∴,
∵,
∴,
在中,
,
∴.
故选A.
4、D
【解析】
根据点A、A′的坐标确定出平移规律,然后根据规律求解点B′的坐标即可.
【详解】
∵A(1,0)的对应点A′的坐标为(2,﹣1),
∴平移规律为横坐标加1,纵坐标减1,
∵点B(0,3)的对应点为B′,
∴B′的坐标为(1,2).
故选D.
本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.
5、D
【解析】
竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10-x)尺,利用勾股定理解题即可.
【详解】
设竹子折断处离地面x尺,则斜边为(10-x)尺,
根据勾股定理得:x1+31=(10-x)1.
故选D.
此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
6、B
【解析】
由数轴得出b-a<0、1-a>0,再根据二次根式的性质化简即可.
【详解】
解:由数轴知b-a<0、0∴1-a>0,
则原式=|b-a| -1-a ||
=a-b-(1-a)
=a-b-1+a
=2a-b-1,
故选:B.
本题主要考查二次根式的性质与化简,解题的额关键是掌握二次根式的性质及绝对值的性质.
7、C
【解析】
根据最简二次根式的定义对各选项分析判断即可.
【详解】
解:A、是最简二次根式,不合题意,故本选项错误;
B、是最简二次根式,不合题意,故本选项错误;
C、因为=2,所以不是最简二次根式,符合题意,故本选项正确;
D、是最简二次根式,不合题意,故本选项错误;
故选C.
本题考查了最简二次根式的定义,根据定义,最简二次根式必须满足被开方数不含分母且不含能开得尽方的因数或因式.
8、D
【解析】
A、把点的坐标代入关系式,检验是否成立;
B、把y=0代入解析式求出x,判断即可;
C、根据一次项系数判断;
D、根据系数和图象之间的关系判断.
【详解】
解:A、当x=1时,y=1.所以图象不过(1,−1),故错误;
B、把y=0代入y=−2x+3,得x=,所以图象与x轴的交点是(,0),故错误;
C、∵−2<0,∴y随x的增大而减小,故错误;
D、∵−2<0,3>0,∴图象过一、二、四象限,不经过第三象限,故正确.
故选:D.
本题主要考查了一次函数的图象和性质.常采用数形结合的思想求解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
利用向量加法法则进行运算即可.
【详解】
解:原式= ==,
故答案是:.
本题考查了向量加法运算,熟练的掌握运算法则是解题的关键.
10、
【解析】
根据正方形对角线等于边长的倍得出规律即可.
【详解】
由题意得,a1=1,
a2=a1=,
a3=a2=()2,
a4=a3=()3,
…,
an=an-1=()n-1.
=[()n-1]2=
故答案为:
本题主要考查了正方形的性质,熟记正方形对角线等于边长的倍是解题的关键,要注意的指数的变化规律.
11、y1>y2
【解析】
分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质,由k的值判断函数的增减性,由此比较即可.
详解:∵k=-5<0
∴y随x增大而减小,
∵-2<5
∴>.
故答案为:>.
点睛:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.
12、3x.
【解析】
根据盒中有x枚黑棋和y枚白棋,得出袋中共有(x+y)个棋,再根据概率公式列出关系式即可.
【详解】
∵从盒中随机取出一枚为黑棋的概率是,
∴,
整理,得:y=3x,
故答案为:3x.
此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= .
13、xn+1-1
【解析】
观察其右边的结果:第一个是x2-1;第二个是x3-1;…依此类推,则第n个的结果即可求得.(x-1)(xn+xn-1+…x+1)=xn+1-1.
三、解答题(本大题共5个小题,共48分)
14、3.
【解析】
直接利用绝对值的性质以及零指数幂的性质、二次根式的性质、负指数幂的性质分别化简得出答案.
【详解】
原式=3--1+4-2=3
此题主要考查了实数运算,正确化简各数是解题关键.
15、.
【解析】
先算括号里面的,再算除法,把分式化为最简公式,把x的值代入进行计算即可
【详解】
原式=
=
= ,
当x= +1时,原式=.
此题考查分式的化简求值,掌握运算法则是解题关键
16、(1)2;(2)见解析;(3)﹣1≤x<﹣2或2<x≤1
【解析】
(1)依据在y=|x|+1中,令x=﹣2,则y=2,可得m的值;
(2)将图中的各点用平滑的曲线连接,即可画出该函数的图象;
(3)依据函数图象,即可得到当2<y≤3时,x的取值范围.
【详解】
(1)在y=|x|+1中,令x=﹣2,则y=2,
∴m=2,
故答案为2;
(2)如图所示:
(3)由图可得,当2<y≤3时,x的取值范围为﹣1≤x<﹣2或2<x≤1.
故答案为﹣1≤x<﹣2或2<x≤1.
本题考查了一次函数的图象与性质以及一次函数图象上点的坐标特征,根据题意画出图形,利用数形结合思想是解题的关键.
17、 “海天”号的航行方向是沿北偏西方向航行
【解析】
直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角得出答案.
【详解】
由题意可得:RP=18海里,PQ=24海里,QR=30海里,
∵182+242=302,
∴△RPQ是直角三角形,
∴∠RPQ=90°,
∵“远航”号沿北偏东60°方向航行,
∴∠RPN=30°,
∴“海天”号沿北偏西30°方向航行.
此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.
18、(1)13.4;(2)13.3 ,13.3;(3)选择张明
【解析】
根据折线统计图写出答案即可
根据已知条件求得中位数及平均线即可,中数是按顺序排列的一组数据中居于中间位置的数,平均数是指在一组数据中所有数据之和再除以数据的个数.
根据平均线一样,而张明的方差较稳定,所以选择张明.
【详解】
(1)根据折线统计图写出答案即可,即13.4;
(2)中数是按顺序排列的一组数据中居于中间位置的数,即是13.3 ,平均数是指在一组数据中所有数据之和再除以数据的个数.即(13.2+13.4+13.1+13.5+13.3)5=13.3;
(3)选择张明参加比赛.理由如下:
因为张明和李亮成绩的平均数、中位数都相同,但张明成绩的方差小于李亮成绩的方差,张明的成绩较稳定,所以应该选择张明参加比赛.
本题考查平均数、中位数和方差,熟练掌握计算法则和它们的性质是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、A4(7,8);An(2n-1-1,2n-1).
【解析】
∵点B1的坐标为(1,1),点B2的坐标为(3,2)
∴由题意知:A1的坐标是(0,1),A2的坐标是:(1,2),
∴直线A1A2的解析式是y=x+1.纵坐标比横坐标多1.
∵A1的纵坐标是:1=20,A1的横坐标是:0=20-1;
A2的纵坐标是:1+1=21,A2的横坐标是:1=21-1;
A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22-1,
A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23-1,即点A4的坐标为(7,8).
∴An的纵坐标是:2n-1,横坐标是:2n-1-1,
即点An的坐标为(2n-1-1,2n-1).
故答案为(7,8);(2n-1-1,2n-1).
20、四
【解析】
根据一次函数的性质确定两条直线所经过的象限可得结果.
【详解】
解:直线y=2x+3过一、二、三象限;
当m>0时,直线y=-x+m过一、二、四象限,
两直线交点可能在一或二象限;
当m<0时,直线y=-x+m过二、三、四象限,
两直线交点可能在二或三象限;
综上所述,直线y=2x+3与直线y=-x+m的交点不可能在第四象限,
故答案为四.
本题主要考查了两直线相交问题,熟记一次函数图象与系数的关系是解答此题的关键.
21、
【解析】
连结,作于,根据中心对称图形的定义和相似三角形的性质可得两直角边的比是,进一步得到长与宽的比即可.
【详解】
解:连结,作于,
在矩形内放入四个小正方形和两个小长方形后成中心对称图形,
,,
,
长与宽的比为,
即,
故答案为:.
此题考查了中心对称图形、相似三角形的性质、全等三角形的性质、矩形的性质、正方形的性质等知识,关键是理解直角三角形两直角边的比是.
22、9
【解析】
假设第一组有x人,第二组y人,第三组z人,那么销售高层特价房共获奖励可表示为1×(6x+2y+8z)万元,销售洋房特价房共获奖励可表示为2×(4x+2y+5z)万元,销售别墅特价房共获奖励4×(3x+y)万元.
【详解】
设第一组有x人,第二组y人,第三组z人,依题意列三元一次方程组:
化简①得 18x+6y+8z=250 ④
化简②得 4x+2y+5z=108 ⑤
由④-⑤得 14x+4y+3z=142 ⑥
由④×2-⑥×3得-6x+7z=74 ⑦
即z+6(z-x)=74
由z≤20得 74-6(z-x)≤20
解得z-x≥9
故第三组销售人员的人数比第一组销售人员的人数多 9人.
此题考查三元一次方程组的应用,解题关键在于列出方程.
23、上 1.
【解析】
根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.
【详解】
解:函数y=-6x+1的图象是由直线y=-6x向上平移1个单位长度得到的.
故答案为:上,1.
本题考查一次函数图象与几何变换,掌握平移中解析式的变化规律是:左加右减;上加下减是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)AD=3;(2)S△ABC=9+3.
【解析】
试题分析:(1)根据三角形内角和可得∠DAC=45°,根据等角对等边可得AD=CD,然后再根据勾股定理可计算出AD的长;
(2)根据三角形内角和可得∠BAD=30°,再根据直角三角形的性质可得AB=2BD,然后利用勾股定理计算出BD的长,进而可得BC的长,然后利用三角形的面积公式计算即可.
解:(1)∵∠C=45°,AD是△ABC的边BC上的高,∴∠DAC=45°,∴AD=CD.
∵AC2=AD2+CD2,∴62=2AD2,∴AD=3
(2)在Rt△ADB中,∵∠B=60°,∴∠BAD=30°,∴AB=2BD.
∵AB2=BD2+AD2,∴(2BD)2=BD2+AD2,BD=.
∴S△ABC=BC·AD= (BD+DC)·AD=×(+3)×3=9+3.
25、(1) (2) (3)
【解析】
(1)运用直接开平方法;(2)运用配方法;(3)运用公式法.
【详解】
解(1)
(2)
所以
(3)
因为a=1,b=-4,c=-7
所以,
所以
考核知识点:解一元二次方程.掌握各种方法是关键.
26、 (1)y=-2x+32();(2)当AB长为12米,AD长为10米时,矩形的面积为120平方米.
【解析】
(1)根据2x+y=32,整理可得y与x的关系式,再结合墙长即可求得x的取值范围;
(2)根据长方形的面积公式可得S与x的关系式,再令S=120,可得关于x的方程,解方程即可求得答案.
【详解】
(1)由题意2x+y=32,
所以y=-2x+32,
又,解得7≤x<16,
所以y=-2x+32();
(2),
,
∵,
∴,
,(不合题意,舍去) ,
,
答:当AB长为12米,AD长为10米时,矩形的面积为120平方米.
本题考查了二次函数的应用,弄清题意,找准各量间的关系列出函数解析式是解题的关键.
题号
一
二
三
四
五
总分
得分
X
…
﹣4
﹣3
﹣2
﹣1
0
1
2
3
4
…
Y
…
3
2.5
m
1.5
1
1.5
2
2.5
3
…
河南省南阳新野县联考2024-2025学年九上数学开学调研试题【含答案】: 这是一份河南省南阳新野县联考2024-2025学年九上数学开学调研试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省南阳卧龙区五校联考2024年九上数学开学调研试题【含答案】: 这是一份河南省南阳卧龙区五校联考2024年九上数学开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届河南省南阳南召县联考数学九上开学复习检测模拟试题【含答案】: 这是一份2025届河南省南阳南召县联考数学九上开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。