河南省淮阳第一高级中学2024-2025学年九年级数学第一学期开学达标测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)实数、在数轴上对应的位置如图,化简等于( )
A.B.
C.D.
2、(4分)在菱形中,对角线相交于点,,则的长为( )
A.B.C.D.
3、(4分)在平面直角坐标系中,把直线y=2x向左平移1个单位长度,平移后的直线解析式是( )
A.y=2x+1B.y=2x﹣1C.y=2x+2D.y=2x﹣2
4、(4分)做“抛掷一枚质地均匀的硬币试验”,在大量重复试验中,对于事件“正面朝上”的频率和概率,下列说法正确的是( )
A.概率等于频率B.频率等于C.概率是随机的D.频率会在某一个常数附近摆动
5、(4分)如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AB,BC边上的中点,连接EF.若,BD=4,则菱形ABCD的周长为( )
A.4B.C.D.28
6、(4分)下列代数式属于分式的是( )
A.B.C.D.
7、(4分)已知实数a在数轴上的位置如图所示,则化简的结果为( )
A.1B.﹣1C.1﹣2aD.2a﹣1
8、(4分)历史上对勾股定理的一种证法采用了如图所示的图形,其中两个全等的直角三角形的直角边在同一条直线上.证明中用到的面积相等关系是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某校四个植树小队,在植树节这天种下柏树的棵数分别为10,x,10,8,若这组数据的中位数和平均数相等,那么x=_____.
10、(4分)(1)____________;(2)=____________.
11、(4分)一次函数的图象如图所示,当时,的取值范围是_______.
12、(4分)已知一组数据0,1,2,2,x,3的平均数是2,则这组数据的方差是_____.
13、(4分)如图,正方形和正方形的边长分别为3和1,点、分别在边、上,为的中点,连接,则的长为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.
15、(8分)化简并求值:其中.
16、(8分)解不等式组:
17、(10分)如图,平行四边形ABCD中,AE=CE.
(1)用尺规或只用无刻度的直尺作出的角平分线,保留作图痕迹,不需要写作法.
(2)设的角平分线交边AD于点F,连接CF,求证:四边形AECF为菱形.
18、(10分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD的面积和对角线长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于x的方程无解,则m= .
20、(4分)因式分解:2x2﹣2=_____.
21、(4分)如图,△ACE是以ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(7,),则D点的坐标是_____.
22、(4分)若b为常数,且﹣bx+1是完全平方式,那么b=_____.
23、(4分)如图,在Rt△ABC中,∠C=90°,AD=BE=2,点M,P,N分别是DE,BD,AB的中点,则△PMN的周长=___.
二、解答题(本大题共3个小题,共30分)
24、(8分)总书记说:“读可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同,求进馆人次的月平均增长率.
25、(10分)如图,已知△ABC中,∠B=90 º,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
(1)出发2秒后,求PQ的长;
(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?
(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
26、(12分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下方,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).
(1)求线段CD的长;
(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;
(3)当点P在线段AD上运动时,求S与t的函数关系式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由数轴得出b-a<0、1-a>0,再根据二次根式的性质化简即可.
【详解】
解:由数轴知b-a<0、0∴1-a>0,
则原式=|b-a| -1-a ||
=a-b-(1-a)
=a-b-1+a
=2a-b-1,
故选:B.
本题主要考查二次根式的性质与化简,解题的额关键是掌握二次根式的性质及绝对值的性质.
2、D
【解析】
由菱形的对角线的性质可知OA=4,根据勾股定理即可求出OD的长.
【详解】
解:如图,
∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC=4,
∵AD=5,
∴OD==3.
故选D.
本题考查了菱形的性质和勾股定理.
3、C
【解析】
试题分析:函数图像的平移法则为:上加下减,左加右减,则直线y=2x向左平移1个单位后的直线解析式为:y=2(x+1)=2x+2.
4、D
【解析】
频率是在一次试验中某一事件出现的次数与试验总数的比值。概率是某一事件所固有的性质。频率是变化的每次试验可能不同,概率是稳定值不变。在一定条件下频率可以近似代替概率。
【详解】
A、概率不等于频率,A选项错误;
B、频率等于 ,B选项错误
C、概率是稳定值不变,C选项错误
D、频率会在某一个常数附近摆动,D选项是正确的。
故答案为:D
此题主要考查了概率公式,以及频率和概率的区别。
5、C
【解析】
首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.
【详解】
解:∵E,F分别是AB,BC边上的中点,EF=,
∴AC=2EF=2,
∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC=,OB=BD=2,
∴AB==,
∴菱形ABCD的周长为4.
故选C.
6、A
【解析】
形如(A、B均为整式,B中有字母,)的式子是分式,根据分式的定义解答.
【详解】
根据分式的定义得到:是分式,、、均不是分式,
故选:A.
此题考查分式的定义,熟记定义掌握定义中的A及B的要求是解答问题的关键.
7、A
【解析】
先由点a在数轴上的位置确定a的取值范围及a-1的符号,再代入原式进行化简即可
【详解】
由数轴可知0<a<1,
所以,=1,选A。
此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a的大小
8、D
【解析】
用三角形的面积和、梯形的面积来表示这个图形的面积,从而证明勾股定理.
【详解】
解:∵由S△EDA+S△CDE+S△CEB=S四边形ABCD.
可知ab+c2+ab=(a+b)2,
∴c2+2ab=a2+2ab+b2,整理得a2+b2=c2,
∴证明中用到的面积相等关系是:S△EDA+S△CDE+S△CEB=S四边形ABCD.
故选D.
本题考查勾股定理的证明依据.此类证明要转化成该图形面积的两种表示方法,从而转化成方程达到证明的结果.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、12或1
【解析】
先根据中位数和平均数的概念得到平均数等于 ,由题意得到=10或9,解出x即可.
【详解】
∵这组数据的中位数和平均数相等,
∴=10或9,
解得:x=12或1,
故答案是:12或1.
考查了中位数的概念:一组数据按从小到大排列,最中间那个数(或最中间两个数的平均数)就是这组数据的中位数.
10、5
【解析】
(1)根据二次根式的性质计算即可;
(2)根据二次根式除法运算法则计算即可.
【详解】
解:(1);
(2).
故答案为:5;.
此题主要考查了二次根式的性质和除法运算,正确掌握相关运算法则是解题关键.
11、
【解析】
根据函数图象与轴的交点坐标,观察图象在x轴上方的部分即可得.
【详解】
当y≥0时,观察图象就是直线y=kx+b在x轴上方的部分对应的x的范围(包含与x轴的交点),
∴x≤2,
故答案为:x≤2.
本题考查了一次函数与一元一次不等式的关系,合理运用数形结合思想是解题的关键.
12、.
【解析】
已知数据0,1,2,2,x,3的平均数是2,
由平均数的公式计算可得(0+1+2+2+x+3)÷6=2,
解得x=4,
再根据方差的公式可得,
这组数据的方差= [(2﹣0)2+(2﹣1)2+(2﹣2)2+(2﹣2)2+(2﹣4)2+(2﹣3)2]=.
13、
【解析】
延长GE交AB于点O,作PH⊥OE于点H,则PH是△OAE的中位线,求得PH的长和HG的长,在Rt△PGH中利用勾股定理求解.
【详解】
解:延长GE交AB于点O,作PH⊥OE于点H.
则PH∥AB.
∵P是AE的中点,
∴PH是△AOE的中位线,
∴PH= OA= ×(3-1)=1.
∵直角△AOE中,∠OAE=45°,
∴△AOE是等腰直角三角形,即OA=OE=2,
同理△PHE中,HE=PH=1.
∴HG=HE+EG=1+1=2.
∴在Rt△PHG中,PG=
故答案是:.
本题考查了正方形的性质、勾股定理和三角形的中位线定理,正确作出辅助线构造直角三角形是关键.
三、解答题(本大题共5个小题,共48分)
14、2+
【解析】
试题分析:先求出x2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.
试题解析:x2=(2﹣)2=7﹣4,
则原式=(7+4)(7﹣4)+(2+)(2﹣)+
=49﹣48+1+
=2+.
15、,
【解析】
先计算异分母分式加法,同时将除法写成乘法再约分,最后将x的值代入计算.
【详解】
原式==,
当时,
原式=,
故答案为: .
此题考查分式的化简计算,正确计算分式的混合运算是解题的关键.
16、
【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.
【详解】
解:
解不等式①得,
解不等式②得,
∴原不等式组的解集是
本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.
17、(1)见详解;(2)见解析.
【解析】
(1)只用无刻度直尺作图过程如下:①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;
(2)先根据AF=EC,AF∥CE,判定四边形AECF是平行四边形,再根据AE=EC,即可得出平行四边形AECF是菱形.
【详解】
解:(1)如图所示,EO为∠AEC的角平分线;
(2)∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AFE=∠FEC,
又∵∠AEF=∠CEF,
∴∠AEF=∠AFE,
∴AE=AF,
∴AF=EC,
∴四边形AECF是平行四边形,
又∵AE=EC,
∴平行四边形AECF是菱形.
本题主要考查了平行四边形的性质以及菱形的判定,解题时注意:一组邻边相等的平行四边形是菱形.
18、正方形ABCD的面积为800;对角线BD=40.
【解析】
根据正方形的性质及勾股定理进行作答.
【详解】
连接BD.
∵ABCD为正方形,
∴∠A=∠C=90°.
在Rt△BCE中,BC=.
在Rt△ABD中,BD=.
∴正方形ABCD的面积=.
本题考查了正方形的性质及勾股定理,熟练掌握正方形的性质及勾股定理是本题解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、﹣8
【解析】
试题分析:∵关于x的方程无解,∴x=5
将分式方程去分母得:,
将x=5代入得:m=﹣8
【详解】
请在此输入详解!
20、
【解析】
首先提公因式2,再利用平方差进行二次分解.
【详解】
原式=2(x2﹣1)=2(x+1)(x﹣1).
故答案为2(x+1)(x﹣1).
此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
21、(3,0)
【解析】
∵点C与点E关于x轴对称,E点的坐标是(7,),
∴C的坐标为(7,).
∴CH=,CE=,
∵△ACE是以ABCD的对角线AC为边的等边三角形,
∴AC=.
∴AH=1.
∵OH=7,
∴AO=DH=2.
∴OD=3.
∴D点的坐标是(3,0).
22、±1
【解析】
根据完全平方式的一般式,计算一次项系数即可.
【详解】
解:∵b为常数,且x2﹣bx+1是完全平方式,
∴b=±1,
故答案为±1.
本题主要考查完全平方公式的系数关系,关键在于一次项系数的计算.
23、2+.
【解析】
先由三角形中位线定理得出PM∥BC,PN∥AC,PM=BE=1,PN=AD=1,再根据平行线的性质得出∠MPD=∠DBC,∠DPN=∠CDB,可证∠MPN=90°,利用勾股定理求出MN==,进而得到△PMN的周长.
【详解】
∵点M,P,N分别是DE,BD,AB的中点,AD=BE=2,
∴PM∥BC,PN∥AC,PM=BE=1,PN=AD=1,
∴∠MPD=∠DBC,∠DPN=∠CDB,
∴∠MPD+∠DPN=∠DBC+∠CDB=180°﹣∠C=90°,
即∠MPN=90°,
∴MN==,
∴△PMN的周长=2+.
故答案为2+.
本题考查了三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.也考查了平行线的性质,勾股定理,三角形内角和定理.求出PM=PN=1,MN=是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、进馆人次的月平均增长率为50%
【解析】
先分别表示出第二个月和第三个月的进馆人次,再根据第一个月的进馆人次加第二和第三个月的进馆人次等于608,列方程求解.
【详解】
设进馆人次的月平均增长率为x,则由题意得:
128+128(1+x)+128(1+x)2=608,
化简得:4x2+12x-7=0,
∴(2x-1)(2x+7)=0,
∴x=0.5=50%或x=-3.5(舍),
答:进馆人次的月平均增长率为50%.
本题属于一元二次方程的应用题,列出方程是解题的关键.本题难度适中,属于中档题.
25、(1);(2);(3)当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形
【解析】
(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;
(2)设出发t秒钟后,△PQB能形成等腰三角形,则BP=BQ,由BQ=2t,BP=8-t,列式求得t即可;
(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时,则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时,则BC+CQ=24,易求得t;③当BC=BQ时,过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.
【详解】
(1)当t=2时BQ=2×2=4 cm,BP=AB-AP=16-2×1=14 cm ,∠B=90°,
∴PQ= = cm
(2)依题意得: BQ=2t ,BP=16-t
2t =16-t 解得:t=
即出发秒钟后,△PQB能形成等腰三角形;
(3) ①当CQ=BQ时(如下图),则∠C=∠CBQ,
∵∠ABC=90°
∴∠CBQ+∠ABQ=90°
∠A+∠C=90°
∴∠A=∠ABQ
∴BQ=AQ
∴CQ=AQ=10
∴BC+CQ=22
∴t=22÷2=11秒
②当CQ=BC时(如图2),则BC+CQ=24
∴t=24÷2=12秒
③当BC=BQ时(如图3),过B点作BE⊥AC于点E,
则BE= ,
∴CE=,
故CQ=2CE=14.4,
所以BC+CQ=26.4,
∴t=26.4÷2=13.2秒
由上可知,当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形
此题考查勾股定理,等腰三角形的判定,解题关键在于作辅助线.
26、(1)CD=;(2)≤t≤;(3)当0<t<时,S=;当≤t≤时,S=2;当<t≤时,S=-t2+t-.
【解析】
(1)由勾股定理得出AB=,由△ABC的面积得出AC•BC=AB•CD,即可得出CD的长;
(2)分两种情形:①当点N在线段CD上时,如图1所示,利用相似三角形的性质求解即可.②当点Q在线段CD上时,如图2所示,利用相似三角形的性质求解即可.
(3)首先求出点Q落在AC上的运动时间t,再分三种情形:①当0<t<时,重叠部分是矩形PHYN,如图4所示,②当≤t≤时,重合部分是矩形PQMN,S=PQ•PN=2.③当<t≤时,如图5中重叠部分是五边形PQMJI,分别求解即可.
【详解】
(1)∵∠ACB=90°,AC=8,BC=1,
∴AB=,
∵S△ABC=AC•BC=AB•CD,
∴AC•BC=AB•CD,即:8×1=10×CD,
∴CD=;
(2)在Rt△ADC中,AD=,BD=AB-AD=10-=,
当点N在线段CD上时,如图1所示:
∵矩形PQMN,PQ总保持与AC垂直,
∴PN∥AC,
∴∠NPD=∠CAD,
∵∠PDN=∠ADC,
∴△PDN∽△ADC,
∴,即:,
解得:PD=,
∴t=AD-PD=,
当点Q在线段CD上时,如图2所示:
∵PQ总保持与AC垂直,
∴PQ∥BC,△DPQ∽△DBC,
∴,即:,
解得:DP= ,
∴t=AD+DP=,
∴当矩形PQMN与线段CD有公共点时,t的取值范围为≤t≤;
(3)当Q在AC上时,如图3所示:
∵PQ总保持与AC垂直,
∴PQ∥BC,△APQ∽△ABC,
∴,即:,
解得:AP= ,
当0<t<时,重叠部分是矩形PHYN,如图4所示:
∵PQ∥BC,
∴△APH∽△ABC,
∴,即:,
∴PH=,
∴S=PH•PN=;
当≤t≤时,重合部分是矩形PQMN,S=PQ•PN=2.
当<t≤时,如图5中重叠部分是五边形PQMJI,
S=S矩形PNMQ-S△JIN=2- •(t-)[1-(-t)•]=-t2+t-.
【点评】
本题属于四边形综合题,考查了解直角三角形,矩形的性质,相似三角形的判定和性质,多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.
题号
一
二
三
四
五
总分
得分
2024年河南省淮阳区羲城中学九年级数学第一学期开学质量检测试题【含答案】: 这是一份2024年河南省淮阳区羲城中学九年级数学第一学期开学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省郑州市名校数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年河南省郑州市名校数学九年级第一学期开学达标检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省禹州市九年级数学第一学期开学达标测试试题【含答案】: 这是一份2024-2025学年河南省禹州市九年级数学第一学期开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。