2024-2025学年河南省洛阳市涧西区洛阳市数学九年级第一学期开学达标测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P从点A出发,以每秒3cm的速度沿折线A-B-C-D方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动、已知动点P,Q同时出发,当点Q运动到点C时,点P,Q停止运动,设运动时间为t秒,在这个运动过程中,若△BPQ的面积为20cm2 , 则满足条件的t的值有( )
A.1个B.2个C.3个D.4个
2、(4分)某医药研究所开发了一种新药,在试验效果时发现,如果成人按规定剂量服用,服药后血液中的含药量逐渐增多,一段时间后达到最大值,接着药量逐步衰减直至血液中含药量为0,每毫升血液中含药量(微克)随时间(小时)的变化如图所示,下列说法:(1)2小时血液中含药量最高,达每毫升6微克.(2)每毫升血液中含药量不低于4微克的时间持续达到了6小时.(3)如果一病人下午6:00按规定剂量服此药,那么,第二天中午12:00,血液中不再含有该药,其中正确说法的个数是()
A.0B.1
C.2D.3
3、(4分)下列各式中,运算正确的是( )
A.B.C.D.2+=2
4、(4分)若关于x的不等式组的解集为x<2,则a的取值范围是( )
A.a≥﹣2B.a>﹣2C.a≤﹣2D.a<﹣2
5、(4分)直角三角形的两条直角边长分别为a和b,斜边长为c,已知c=13,b=5,则a=( )
A.1B.5C.12D.25
6、(4分)如图,E为边长为 2 的正方形 ABCD的对角线上一点,BE=BC,P为 CE上任意一点,PQ⊥BC于点 Q,PR⊥BE于 R,则 PQ+PR的值为( )
A.B.C.D.
7、(4分)如图,在中,,是的平分线,于点,平分,则等于( )
A.1.5°B.30°C.25°D.40°
8、(4分)化简的结果是( )
A.3B.2C.2D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分式与的最简公分母是__________.
10、(4分)如图,正方形ABCD中,AB=6,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为_____。
11、(4分)已知一个多边形的内角和为540°,则这个多边形是______边形.
12、(4分)实数在数轴上的对应点的位置如图所示,则__________.
13、(4分)已知方程组,则x+y的值是____.
三、解答题(本大题共5个小题,共48分)
14、(12分) “赏中华诗词,寻文化基因,品生活之美”某校举办了首届“中国诗词比赛”,全校师生同时默写50首古诗,每正确默写出一首古诗得2分,结果有600名学生进入决赛,从进入决赛的600名学生中随机抽取40名学生进行成绩分析,根据比赛成绩绘制出部分频数分布表和部分频数分布直方图如下列图表
第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82请结合以上数据信息完成下列各题:
(1)填空:a= 所抽取的40名学生比赛成绩的中位数是
(2)请将频数分布直方图补充完整
(3)若比赛成绩不低于84分的为优秀,估计进入决赛的学生中有多少名学生的比赛成绩为优秀?
15、(8分)如图,直线l 在平面直角坐标系中,直线l与y轴交于点A,点B(-3,3)也在直线1上,将点B先向右平移1个单位长度、再向下平移2个单位长度得到点C,点C恰好也在直线l上.
(1)求点C的坐标和直线l的解析式
(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l上;
(3)已知直线l:y=x+b经过点B,与y轴交于点E,求△ABE的面积.
16、(8分)解不等式组:,并把不等式组的解集在数轴上标出来
17、(10分)如图,在坐标系中,△ABC中A(-2,-1)、B(-3,-4)、C(0,-3).
(1)请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标;
(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的所有可能的坐标.
18、(10分)平衡车越来越受到中学生的喜爱,某公司今年从厂家以3000元/辆的批发价购进某品牌平衡车300辆进行销售,零售价格为4200元/辆,暑期将至,公司决定拿出一部分该品牌平衡车以4000元/辆的价格进行促销.设全部售出获得的总利润为y元,今年暑假期间拿出促销的该品牌平衡车数量为x辆,根据上述信息,解答下列问题:
(1)求y与x之间的函数解析式(也称关系式),并直接写出x的取值范围;
(2)若以促销价进行销售的数量不低于零售价销售数量的 ,该公司应拿出多少辆该品牌平衡车促销才能使这批车的销售利润最大?并求出最大利润.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)将点先向左平移6个单位,再向下平移4个单位得到点,则的坐标是__.
20、(4分)小明家和丽丽家相距400米.里期天,小明接到丽丽电话后,两人各自从家同时出发,沿同一条路相向而行,小明出发3分钟后停下休息,等了一会,才与丽丽相遇,然后随丽丽一起返回自己家.若两人距小明家的距离(米)与他们步行的时间(分钟)之间的函数关系如图所示,结合图象可知,小明中途休息了___分钟.
21、(4分)一次函数的图象过点,且y随x的增大而减小,则m=_______.
22、(4分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .
23、(4分)如图,点、分别是平行四边形的两边、的中点.若的周长是30,则的周长是_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)甲、乙两人加工一种零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用的时间相等.
(1)求甲每小时加工多少个零件?
(2)由于厂家在12小时内急需一批这种零件不少于1000件,决定由甲、乙两人共同完成.乙临时有事耽搁了一段时间,先让甲单独完成一部分零件后两人合作完成剩下的零件.求乙最多可以耽搁多长时间?
25、(10分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.
(1)求证:四边形ABCD是矩形;
(2)若∠AOB∶∠ODC=4∶3,求∠ADO的度数.
26、(12分)已知一次函数的图象经过点(-2,-7)和(2,5),求该一次函数解析式并求出函数图象与y轴的交点坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
过A作AH⊥DC,由勾股定理求出DH的长.然后分三种情况进行讨论:即①当点P在线段AB上,②当点P在线段BC上,③当点P在线段CD上,根据三种情况点的位置,可以确定t的值.
【详解】
解:过A作AH⊥DC,∴AH=BC=2cm,DH= ==1.
i)当P在AB上时,即时,如图,,解得:;
ii)当P在BC上时,即<t≤1时,BP=3t-10,CQ=11-2t,,化简得:3t2-34t+100=0,△=-44<0,∴方程无实数解.
iii)当P在线段CD上时,若点P在线段CD上,若点P在Q的右侧,即1≤t≤,则有PQ=34-5t,,<1(舍去);
若点P在Q的左侧时,即,则有PQ=5t-34,;
t=7.2.
综上所述:满足条件的t存在,其值分别为,t2=7.2.
故选B.
本题是平行四边形中的动点问题,解决问题时,一定要变动为静,将其转化为常见的几何问题,再进行解答.
2、D
【解析】
通过观察图象获取信息列出函数解析式,并根据一次函数的性质逐一进行判断即可。
【详解】
解:由图象可得,服药后2小时内,血液中的含药量逐渐增多,在2小时的时候达到最大值,最大值为每毫升6微克,故(1)是正确的;
设当0≤x≤2时,设y=kx,
∴2k=6,解得k=3
∴y=3x
当y=4时,x=
设直线AB的解析式为y=ax+b,得
解得a=- ; b=
∴y=-x+
当y=4时,x=
∴每毫升血液中含药量不低于4微克的时间持续-小时,
故(2)正确
把y=0代入y=-x+得
x=18
前一天下午六点到第二天上午12点时间为18小时,所以(3)正确。
故正确的说法有3个.
故选:D
主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
3、C
【解析】
根据二次根式的性质对A进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的加减运算对B、D进行判断.
【详解】
A. 原式=|−2|=2,所以A选项错误;
B. 原式=,所以B选项错误;
C. ,所以C选项正确;
D. 2与不能合并,所以D选项错误。
故选C
此题考查二次根式的混合运算,难度不大
4、C
【解析】
分别求出每个不等式的解集,根据不等式组的解集为x<2可得关于a的不等式,解之可得.
【详解】
解不等式,得:x<2,
解不等式<x,得:x<﹣a,
∵不等式组的解集为x<2,
∴﹣a≥2,
解得:a≤﹣2,
故选:C.
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
5、C
【解析】
根据勾股定理计算即可.
【详解】
由勾股定理得,a=,
故选C.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
6、B
【解析】
连接BP,设点C到BE的距离为h,然后根据S△BCE=S△BCP+S△BEP求出h=PQ+PR,再根据正方形的性质求出h即可.
【详解】
解:如图,连接BP,设点C到BE的距离为h,
则S△BCE=S△BCP+S△BEP,
即BE•h=BC•PQ+BE•PR,
∵BE=BC,
∴h=PQ+PR,
∵正方形ABCD的边长为2,
∴h=2×.
故选B.
本题考查了正方形的性质,三角形的面积,熟记性质并作辅助线,利用三角形的面积求出PQ+PR等于点C到BE的距离是解题的关键.
7、B
【解析】
利用全等直角三角形的判定定理HL证得Rt△ACD≌Rt△AED,则对应角∠ADC=∠ADE;然后根据已知条件“DE平分∠ADB”、平角的定义证得∠ADC=∠ADE=∠EDB=60°;最后由直角三角形的两个锐角互余的性质求得∠B=30°.
【详解】
∵在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,
∴CD=ED.
在Rt△ACD和Rt△AED中,
,
∴Rt△ACD≌Rt△AED(HL),
∴∠ADC=∠ADE(全等三角形的对应角相等).
∵∠ADC+∠ADE+∠EDB=180°,DE平分∠ADB,
∴∠ADC=∠ADE=∠EDB=60°.
∴∠B+∠EDB=90°,
∴∠B=30°.
故选:B.
此题考查角平分线的性质.解题关键在于掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.
8、A
【解析】
直接利用二次根式的性质化简得出答案.
【详解】
.
故选A.
此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
分式的最简公分母通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,即可得解.
【详解】
由题意,得
其最简公分母是,
故答案为:.
此题主要考查分式的最简公分母,熟练掌握,即可解题.
10、3
【解析】
连接DE,交AC于点P,连接BD.点B与点D关于AC对称,DE的长即为PE+PB的最小值,根据勾股定理即可得出DE的长度.
【详解】
连接DE,交AC于点P,连接BD.
∵点B与点D关于AC对称,
∴DE的长即为PE+PB的最小值,
∵AB=6,E是BC的中点,
∴CE=3,
在Rt△CDE中,
DE=
=
=
=3.
故答案为3.
主要考查轴对称,勾股定理等考点的理解,作出辅助线得出DE的长即为PE+PB的最小值为解决本题的关键.
11、5.
【解析】
设这个多边形是n边形,由题意得,
(n-2) ×180°=540°,解之得,n=5.
12、
【解析】
首先根据数轴的含义,得出,然后化简所求式子,即可得解.
【详解】
根据数轴,可得
∴
原式=
故答案为.
此题主要考查绝对值的性质,熟练掌握,即可解题.
13、﹣1.
【解析】
根据题意,①-②即可得到关于x+y的值
【详解】
,
①﹣②得到:﹣3x﹣3y=6,
∴x+y=﹣1,
故答案为﹣1.
此题考查解二元一次方程组,难度不大
三、解答题(本大题共5个小题,共48分)
14、(1)6,78;(2)见解析;(3)240名
【解析】
(1)根据题意和频数分布表中的数据可以求得a的值和这组数据的中位数;
(2)根据(1)中a的值和分布表中成绩为76≤x<84的频数可以将频数分布直方图补充完整;
(3)根据频数分布表中的数据可以计算出进入决赛的学生中有多少名学生的比赛成绩为优秀.
【详解】
解:(1)a=40﹣4﹣8﹣12﹣10=6,
∵第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82,
∴中位数是78,
故答案为:6,78;
(2)由(1)知a=6,
补全的频数分布直方图如右图所示;
(3)600×=240(名),
答:进入决赛的学生中有240名学生的比赛成绩为优秀.
本题考查频数分布直方图、频数分布表、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.
15、(1)(-2,1),y=-2x-3(2)点D在直线l上,理由见解析(3)13.5
【解析】
(1)根据平移的性质得到点C的坐标;把点B、C的坐标代入直线方程y=kx+b(k≠0)来求该直线方程
(2)根据平移的性质得到点D的坐标,然后将其代入(1)中的函数解析式进行验证即可
(3)根据点B的坐标求得直线l的解析式,据此求得相关线段的长度,并利用三角形的面积公式进行解答
【详解】
(1)∵B(-3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,
∴-3+1=-2,3-2=1,
∴C的坐标为(-2,1)
设直线l的解析式为y=kx+c,
∵点B,C在直线l上
代入得
解得k=-2,c=-3,
∴直线l的解析式为y=-2x-3
(2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(-2,1),
∴-2-3=-5,1+6=7
∴D的坐标为(-5,7)
代入y=-2x-3时,左边=右边,
即点D在直线l上
(3)把B的坐标代入y=x+b得:3=-3+b,
解得:b=6
∴y=x+6,
∴E的坐标为(0,6),
∵直线y=-2x-3与y轴交于A点,
∴A的坐标为(0,-3)
∴AE=6+3=9;
∵B(-3,3)
∴△ABE的面积为×9×|-3|=13.5
此题考查一次函数图象与几何变换,利用平移的性质是解题关键
16、﹣2≤x<1,见解析.
【解析】
先分别求出不等式的解集,再在数轴上表示出来即可
【详解】
解: ,
解不等式①,得x<1,
解不等式②,得x≥﹣2,
所以原不等式组的加减为﹣2≤x<1.
把不等式的解集在数轴上表示为:
此题考查解不等式组和在数轴上表示不等式的解集,掌握运算法则是解题关键
17、(1)画图略,A’(2,1)(2)(1,0)或(-1,-6)或(-5,-2)
【解析】
(1)找到三角形各顶点与原点对称点,再连接各点即可;
(2)根据平行四边形的性质即可在直角坐标系中找到D点.
【详解】
(1)如图,△A′B′C′为所求,A’(2,1)
(2)如图,D的坐标为(1,0)或(-1,-6)或(-5,-2)
此题主要考查坐标与图形,解题的关键是熟知直角坐标系的坐标特点.
18、(1)y=﹣200x+360000(0≤x≤300);(2)公司应拿出60辆该品牌平衡车促销才能使这批车的销售利润最大,最大利润为348000元.
【解析】
(1)根据“利润=售价-成本”结合“总利润=促销部分的利润+正常零售的利润”列式进行计算即可得;
(2)根据以促销价进行销售的数量不低于零售价销售数量的列出关于x的不等式,然后求出x的取值范围,继而根据一次函数的性质进行求解即可.
【详解】
(1)根据题意得:
y=(4000﹣3000)x+(4200﹣3000)(300﹣x)=﹣200x+360000(0≤x≤300);
(2)根据题意得:x≥(300-x),
解得x≥60,
由(1)可知,y=﹣200x+360000,
∵﹣200<0,
∴y随x的增大而减小,
∴x=60时,y的值增大,最大值为:﹣200×60+360000=348000(元),
答:公司应拿出60辆该品牌平衡车促销才能使这批车的销售利润最大,最大利润为348000元.
本题考查了一次函数的应用,弄清题意,找准各量间的数量关系是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.
【详解】
解:将点A(4,3)先向左平移6个单位,再向下平移4个单位得到点A1,则A1的坐标是(4-6,3-4),即(-2,-1),
故答案为:(-2,-1).
本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.
20、1
【解析】
先求出丽丽的速度,然后再求得丽丽走200米所用时间,然后再减去3分钟即可.
【详解】
解:400÷8=50米/分钟.
200÷50=4分钟.
4−3=1分钟.
故答案为:1.
本题主要考查的是从函数图象获取信息,求得丽丽的速度是解题的关键.
21、
【解析】
根据一次函数的图像过点,可以求得m的值,由y随x的增大而减小,可以得到m<0,从而可以确定m的值.
【详解】
∵一次函数的图像过点,
∴,解得:或,
∵y随x的增大而减小,
∴,
∴,
故答案为:.
本题考查一次函数图像上点的坐标特征、一次函数的性质,解答此类问题的关键是明确一次函数的性质,利用一次函数的性质解答问题.
22、1或.
【解析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,
在Rt△ABC中,AB=1,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=1,
∴CB′=5-1=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②当点B′落在AD边上时,如答图2所示.
此时ABEB′为正方形,∴BE=AB=1.
综上所述,BE的长为或1.
故答案为:或1.
23、15
【解析】
根据平行四边形与中位线的性质即可求解.
【详解】
∵四边形ABCD为平行四边形,的周长是30,
∴△ADC的周长为30,
∵点、分别是平行四边形的两边、的中点.
∴DE=AD,DF=CD,EF=AC,
∴则的周长=×30=15.
此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及中位线的性质.
二、解答题(本大题共3个小题,共30分)
24、(1)甲每小时加工50个零件,则乙每小时加工40个零件;(2)2小时.
【解析】
(1)主要利用甲加工150个零件所用的时间与乙加工120个零件所用的时间相等,建立等式关系,即可求解,
(2)乙最多可以耽搁多长时间,这是一个不等式,把乙的完成的工作量+甲完成的工作量≥1000,
【详解】
解:(1)设甲每小时加工x个零件,则乙每小时加工(x﹣10)个零件,
根据题意,得:=,
解得:x=50,
经检验x=50是分式方程的解,
答:甲每小时加工50个零件,则乙每小时加工40个零件;
(2)设乙耽搁的时间为x小时,
根据题意,得:50x+(50+40)(12﹣x)≥1000,
解得:x≤2,
答:乙最多可以耽搁2小时.
本题主要考查分式方程和一元一次不等式的实际应用
25、 (1)证明见解析;(2)∠ADO==36°.
【解析】
(1)先判断四边形ABCD是平行四边形,继而根据已知条件推导出AC=BD,然后根据对角线相等的平行四边形是矩形即可;
(2)设∠AOB=4x,∠ODC=3x,则∠OCD=∠ODC=3x.,在△ODC中,利用三角形内角和定理求出x的值,继而求得∠ODC的度数,由此即可求得答案.
【详解】
(1)∵AO=OC,BO=OD,
∴四边形ABCD是平行四边形,
又∵∠AOB=2∠OAD,∠AOB是△AOD的外角,
∴∠AOB=∠OAD+∠ADO.
∴∠OAD=∠ADO.
∴AO=OD.
又∵AC=AO+OC=2AO,BD=BO+OD=2OD,
∴AC=BD.
∴四边形ABCD是矩形.
(2)设∠AOB=4x,∠ODC=3x,则∠ODC=∠OCD=3x,
在△ODC中,∠DOC+∠OCD+∠CDO=180°
∴4x+3x+3x=180°,解得x=18°,
∴∠ODC=3×18°=54°,
∵四边形ABCD是矩形,
∴∠ADC=90°,
∴∠ADO=∠ADC-∠ODC=90°-54°=36°.
本题考查了矩形的判定与性质,三角形内角和定理等知识,熟练掌握和灵活运用相关知识是解题的关键.
26、y=3x-1, 函数图象与y轴的交点坐标(0,-1).
【解析】
设一次函数解析式为y=kx+b,把一次函数图象上两个已知点的坐标代入得到,然后解方程组求出k、b即可得到一次函数解析式;计算出一次函数当x=0时所对应的函数值即可这个一次函数的图象与y轴的交点坐标.
【详解】
设该一次函数解析式为
把点(-2,-7)和(2,5)代入得:
解得
当x=0时,y= -1
∴交点坐标为(0,-1)
此题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解题关键在于利用待定系数法求解析式.
题号
一
二
三
四
五
总分
得分
批阅人
组别
成绩x(分)
频数(人数)
第1组
60≤x<68
4
第2组
68≤x<76
8
第3组
76≤x<84
12
第4组
84≤x<92
a
第5组
92≤x<100
10
2024年河南省洛阳市涧西区+九年级一模数学试题+: 这是一份2024年河南省洛阳市涧西区+九年级一模数学试题+,共12页。试卷主要包含了试题卷上不要答题,请用0,72×10⁴ ×10⁶,下列运算正确的是等内容,欢迎下载使用。
河南省洛阳市涧西区东升二中学2023-2024学年九年级数学第一学期期末综合测试模拟试题含答案: 这是一份河南省洛阳市涧西区东升二中学2023-2024学年九年级数学第一学期期末综合测试模拟试题含答案,共8页。试卷主要包含了对于二次函数,下列描述错误的是等内容,欢迎下载使用。
2023-2024学年河南省洛阳市涧西区洛阳市数学九上期末联考模拟试题含答案: 这是一份2023-2024学年河南省洛阳市涧西区洛阳市数学九上期末联考模拟试题含答案,共8页。试卷主要包含了下列说法正确的是,二次函数图象如图所示,下列结论,如图,是用棋子摆成的“上”字等内容,欢迎下载使用。